课后延时服务收费标准_课 题:不等式小结与复习(1)
【jiaoan.jxxyjl.com--高一数学教案】
课 题:不等式小结与复习(1)教学目的:1.理解不等式的性质及其证明,掌握证明不等式的常用方法; 2.掌握常用基本不等式,并能用之证明不等式和求最值;3.掌握含绝对值的不等式的性质;4.会解一元二次不等式、分式不等式、含绝对值的不等式、简单的高次不等式 学会运用数形结合、分类讨论、等价转换的思想方法分析和解决有关不等式的问题,形成良好的思维品质 授课类型:复习课 课时安排:1课时 教 具:多媒体、实物投影仪
教学过程: 一、复习引入:1.基本不等式、极值定理;2.简述不等式证明的几种常用方法:比较、综合、分析、换元、反证、放缩、构造 二、讲解范例:
例1 求函数 的最大值,下列解法是否正确?为什么?解一: ,∴ 解二: 当 即 时, 答:以上两种解法均有错误 解一错在取不到“=”,即不存在 使得 ;解二错在 不是定值(常数) 正确的解法是:当且仅当 即 时 例2 若 ,求 的最值 解: ∵ ∴ 从而 即 例3设 且 ,求 的最大值解:∵ ∴ 又 ,∴ 即 例4 已知 且 ,求 的最小值 解: 当且仅当 即 时 例5 将一块边长为 的正方形铁皮,剪去四个角(四个全等的正方形),作成一个无盖的铁盒,要使其容积最大,剪去的小正方形的边长为多少?最大容积是多少?解:设剪去的小正方形的边长为 则其容积为 当且仅当 即 时取“=”即当剪去的小正方形的边长为 时,铁盒的容积为 例6 已知0 < x < 1, 0 < a < 1,试比较 的大小 解一: ∵0 < 1 - x2 < 1, ∴ ∴ 解二: ∵0 < 1 - x2 < 1, 1 + x > 1, ∴ ∴ ∴ 解三:∵0< x <1,∴0 < 1 - x < 1, 1< 1 + x < 2, ∴ ∴左 - 右 = ∵0< 1 - x2 <1, 且0< a <1 ∴ ∴ 例7 已知x2 = a2 + b2,y2 = c2 + d2,且所有字母均为正,求证:xy≥ac + bd证一:(分析法)∵a, b, c, d, x, y都是正数∴要证:xy≥ac + bd 只需证:(xy)2≥(ac + bd)2 即 (a2 + b2)(c2 + d2)≥a2c2 + b2d2 + 2abcd 展开得:a2c2 + b2d2 + a2d2 + b2c2≥a2c2 + b2d2 + 2abcd 即 a2d2 + b2c2≥2abcd 由基本不等式,显然成立,∴xy≥ac + bd 证二:(综合法)xy = ≥ 证三:(三角代换法)∵x2 = a2 + b2,∴不妨设a = xsina, b = xcosa∵y2 = c2 + d2 ∴不妨设 c = ysinb, d = ycosb ∴ac + bd = xysinasinb + xycosacosb = xycos(a - b)≤xy例8 已知x1, x2均为正数,求证: 证一:(分析法)由于不等式两边均为正数,平方后只须证:即 再平方 a b c d p m化简整理得 (显然成立) ∴原式成立证二:(反证法)假设 化简可得 (不可能)∴原式成立证三:(构造法)构造矩形abcd,使ab = cd = 1, bp = x1, pc = x2当ðapb = ðdpc时,ap + pd为最短 取bc中点m,有ðamb = ðdmc, bm = mc = ,∴ ap + pd ≥ am + md12即 ∴ 三、课堂练习: 1.求下列函数的最值:1° (min=6)2° ( )2.1° 时求 的最小值, 的最小值 2°设 ,求 的最大值(5)3°若 , 求 的最大值 4°若 且 ,求 的最小值 3.若 ,求证: 的最小值为34.制作一个容积为 的圆柱形容器(有底有盖),问圆柱底半径和高各取多少时,用料最省?(不计加工时的损耗及接缝用料) 四、小结 :五、课后作业:六、板书设计(略) 七、课后记:12
-
【充分条件与必要条件】充分条件与必要条件详细阅读
教学目标 (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学建议(一)教材分析1.知识结构 首先给出推断符号“ ”,并引出的意义,在此基础上讲述了充...
-
函数奇偶性知识点归纳|函数单调性与奇偶性详细阅读
教学目标 1 了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法 (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念 (2)能从数和形两个角度认识单调性和奇偶性 (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶...
-
[数列]数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一...
-
一元二次不等式的解法_一元二次不等式的解法详细阅读
教学目标 (1)掌握; (2)知道一元二次不等式可以转化为一元一次不等式组; (3)了解简单的分式不等式的解法; (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系; (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式; (6)通过利...
-
等比数列的前n项和公式_等比数列的前n项和详细阅读
教学目标 1 掌握等比数列前 项和公式,并能运用公式解决简单的问题 (1)理解公式的推导过程,体会转化的思想; (2)用方程的思想认识等比数列前 项和公式,利用公式知三求一;与通项公式结合知三求二; 2 通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想 3 通过公式推导...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已...
-
【数列】数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一个的前...
-
等差数列求和公式_等差数列详细阅读
教学目标 1 理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题 (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念; (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项; (3)能通过通项公式与图像认识的性质,能用...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及...
-
[交集]交集、并集详细阅读
教学目标 : (1)理解交集与并集的概念; (2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的的求法; (5)通过对概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程; (6)通过对集...