高三第一轮数学怎么学|高三数学第一轮复习讲义
【jiaoan.jxxyjl.com--高二数学教案】
高三数学第一轮复习讲义相互独立事件的概率一.复习目标:1.了解相互独立事件的意义,会求相互独立事件同时发生的概率; 2.会计算事件在 次独立重复试验中恰好发生 次的概率.
二.知识要点:1.相互独立事件的概念: .
2. 是相互独立事件,则 .
3. 次试验中某事件发生的概率是 ,则 次独立重复试验中恰好发生 次的概率是 .
三.课前预习:1.下列各对事件 (1)运动员甲射击一次,“射中 环”与“射中 环”, (2)甲、乙二运动员各射击一次, “甲射中 环”与“乙射中 环”, (3)甲、乙二运动员各射击一次, “甲、乙都射中目标”与,“甲、乙都没有射中目标”, (4)甲、乙二运动员各射击一次, “至少有一人射中目标”与,“甲射中目标但乙没有射中目标”,是互斥事件的有 (1),(3) .相互独立事件的有 (2) .2.某射手射击一次,击中目标的概率是 ,他连续射击 次,且各次射击是否击中目标相互之间没有影响,有下列结论: ①他第 次击中目标的概率是 ;②他恰好击中目标 次的概率是 ; ③他至少击中目标 次的概率是 ,其中正确结论的序号 ①③ . 3. 件产品中有 件次品,从中连续取两次,(1)取后不放回,(2)取后放回,则两次都取合格品的概率分别是 、 .4.三个互相认识的人乘同一列火车,火车有 节车厢,则至少两人上了同一车厢的概率是 ( ) 5.口袋里装有大小相同的黑、白两色的手套,黑色手套 只,白色手套 只,现从中随机地取出两只手套,如果两只是同色手套则甲获胜,两只手套颜色不同则乙获胜,则甲、乙获胜的机会是 ( )123甲多 乙多 一样多 不确定
四.例题分析: 例1.某地区有 个工厂,由于电力紧缺,规定每个工厂在一周内必须选择某一天停电(选哪一天是等可能的),假定工厂之间的选择互不影响.(1)求 个工厂均选择星期日停电的概率;(2)求至少有两个工厂选择同一天停电的概率. 解:设 个工厂均选择星期日停电的事件为 .则 .(2)设 个工厂选择停电的时间各不相同的事件为 .则 ,至少有两个工厂选择同一天停电的事件为 , . 小结: 个工厂均选择星期日停电可看作 个相互独立事件. 例2.某厂生产的 产品按每盒 件进行包装,每盒产品均需检验合格后方可出厂.质检办法规定:从每盒 件 产品中任抽 件进行检验,若次品数不超过 件,就认为该盒产品合格;否则,就认为该盒产品不合格.已知某盒 产品中有 件次品.(1)求该盒产品被检验合格的概率;(2)若对该盒产品分别进行两次检验,求两次检验得出的结果不一致的概率.解: (1)从该盒 件产品中任抽 件,有等可能的结果数为 种,其中次品数不超过 件有 种,被检验认为是合格的概率为 .(2)两次检验是相互独立的,可视为独立重复试验,因两次检验得出该盒产品合格的概率均为 , 故“两次检验得出的结果不一致”即两次检验中恰有一次是合格的概率为.答:该盒产品被检验认为是合格的概率为 ;两次检验得出的结果不一致的概率为 .例3.假定在 张票中有 张奖票( ), 个人依次从中各抽一张,且后抽人不知道先抽人抽出的结果,(1)分别求第一,第二个抽票者抽到奖票的概率,(2)求第一,第二个抽票者都抽到奖票的概率.解:记事件 :第一个抽票者抽到奖票,记事件 :第一个抽票者抽到奖票,则(1) , ,(2) 小结:因为 ≠ ,故a与b是不独立的.例4. 将一枚骰子任意的抛掷 次,问 点出现(即 点的面向上)多少次的概率最大?解:设 为 次抛掷中 点出现 次的概率,则 ,∴ ,∵由 ,得 ,即当 时, , 单调递增,当 时, , 单调递减,从而 最大.
五.课后作业: 班级 学号 姓名 1.将一颗质地均匀的骰子(它是一种各面上分别标有点数 的正方体玩具)先后抛掷 次,至少出现一次 点向上的概率是 ( ) 2.已知盒中装有 只螺口与 只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第 次才取得卡口灯炮的概率为: ( )123 3.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是 ,这位司机遇到红灯前,已经通过了两个交通岗的概率是 ;4.甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92.求该题被乙独立解出的概率。5.三个元件t1、t2、t3正常工作的概率分别为 将它们中某两个元件并联后再和第三元件串联接入电路.(ⅰ)在如图的电路中,电路不发生故障的概率是多少?(ⅱ)三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由.6.甲、乙两人参加一次英语考试,已知在备选的 道试题中,甲能答对其中的 题,乙能答对其中的 题.规定每次考试都从备选择中随机抽出 题进行测试,至少答对 题才算合格.(1)分别求甲、乙两人考试合格的概率;(2)求甲、乙两人至少有一人考试合格的概率. 7.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为 ,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为 ,甲、丙两台机床加工的零件都是一等品的概率为 .(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率; (2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.123
-
算术平均数和几何平均数的不等式_算术平均数与几何平均数(一)详细阅读
教学目标 (1)掌握“两个正数的算术平均数不小于它们的几何平均数”这一重要定理; (2)能运用定理证明不等式及求一些函数的最值; (3)能够解决一些简单的实际问题; (4)通过对不等式的结构的分析及特征的把握掌握重要不等式的联系; (5)通过对重要不等式的证明和等号成立的条件的分析,培养学生严谨科...
-
算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)详细阅读
第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...
-
曲线和方程_曲线和方程详细阅读
教学目标 (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题. (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念. (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点. (4)通过求曲线方程的教学,培养学生的转...
-
不等式的性质二是什么|不等式的性质(二)详细阅读
第二课时教学目标 1.理解同向不等式,异向不等式概念; 2.掌握并会证明定理1,2,3; 3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据; 4.初步理解证明不等式的逻辑推理方法 教学重点:定理1,2,3的证明的证明思路和推导过程教学难点 :理解证明不等式的逻辑推理方法教学...
-
[直线的倾斜角和斜率教案]直线的倾斜角和斜率详细阅读
教学目标 (1)了解直线方程的概念. (2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率. (3)理解公式的推导过程,掌握过两点的直线的斜率公式. (4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交...
-
算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)详细阅读
第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...
-
[简单的线性规划教案]简单的线性规划(二)详细阅读
线性规划教学设计方案(二)教学目标 巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.重点难点 理解二元一次不等式表示平面区域是教学重点. 如何扰实际问题转化为线性规划问题,并给出解答是教学难点.教学步骤【新课引入】 我们知道,二元一次不等式和二元一次不等式组都表示平面...
-
[二阶琴生不等式的证明]不等式的证明(二)详细阅读
第二课时教学目标 1.进一步熟练掌握比较法证明不等式; 2.了解作商比较法证明不等式; 3.提高学生解题时应变能力 教学重点 比较法的应用教学难点 常见解题技巧教学方法 启发引导式教学活动 (一)导入 新课 (教师活动)教师打出字幕(复习提问),请三位同学回答问题,教师点评. (学生活动...
-
【简单的线性规划一】简单的线性规划(一)详细阅读
教学目标 (1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域; (2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念; (3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题; (4)培养学生观察、联想以...
-
一元函数不等式的证明|不等式的证明(一)详细阅读
教学目标 (1)理解证明不等式的三种方法:比较法、综合法和分析法的意义; (2)掌握用比较法、综合法和分析法来证简单的不等式; (3)能灵活根据题目选择适当地证明方法来证不等式; (4)能用不等式证明的方法解决一些实际问题,培养学生分析问题、解决问题的能力; (6)通过不等式证明,培养学生逻辑推理...