因式分解提公因式法计算题40道_《因式分解-提公因式法》知识点归纳

八年级数学教案 2012-10-28 网络整理 晴天

【jiaoan.jxxyjl.com--八年级数学教案】

★★  知识体系梳理
◆  因式分解------把一个多项式变成几个整式的积的形式;(化和为积)
注意:
1、因式分解对象是多项式;
2、因式分解必须进行到每一个多项式因式不能再分解为止;
3、可运用因式分解与整式乘法的互逆关系检验因式分解的正确性;
◆  分解因式的作用
分解因式是一种重要的代数恒等变形,它有着广泛的应用,常见的用途有化简多项式和进行简便运算,恰当的运用分解因式,常可以使计算化繁为简。
◆  分解因式的一些原则
(1)提公因式优先的原则.即一个多项式的各项若有公因式,分解时应首先提取公因式。
(2)分解彻底的原则.即分解因式必须进行到每一个多项式因式都再不能分解为止。
(3)首项为负的添括号原则.即如果多项式的首项系数为负,应先添上带“-”号的括号,并遵循添括号法则。
◆  因式分解的首要方法—提公因式法
1、公因式 :一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
2、提公因式法 :如果一个多项式的各项含有公因式,可以逆用乘法分配律,把各项共有的
因式提出以分解因式的方法,叫做提公因式法。
3、使用提取公因式法应注意几点:
(1)提取的“公因式”可以是数、单项式,也可以是一个多项式,是一个整体。
(2)公因式必须是多项式的每一项都有的因式,在提取公因式时,要把这些公共的因式全部找出来,并提到括号外面去,才算完成了提取公因式。(找最高公因式)
(3)对多项式中的每一项的数字系数,在提取时要提出这些数字系数的最大公约数,各项都含有相同的字母,要提取相同字母的指数的最低指数。
◆  提公因式法分解因式的关键:
1、确定最高公因式;(各项系数的最大公约数与相同因式的最低次幂之积)
2、提出公因式后另一因式的确定;(用原多项式的每一项分别除以公因式)
★★  典型例题、方法导航
◆  考点一:因式分解的意义
【例1】判断下列变形哪些是因式分解?
(1) ---------------------------(       )
(2) -------------------(       )
(3) --------------------(       )
(4) ----------------------------------(       )
(5) -------------------------------(       )
【例2】根据整式乘法与因式分解的关系连线

【例3】已知关于 的多项式 分解因式为 ,求 的值。

◎ 变式议练一
1、下列从左边到右边的变形,是因式分解的是(      )
a、                b、
c、        d、
2、辨析下列因式分解是否正确,若错误请改正。
(1)分解因式不彻底:
(2)提出公因式后漏项:
◆  考点二:提公因式法
【例4】分解因式:
(1)      (2)    (3)

(4)           (5) 12

◎ 变式议练二:
1、多项式 与多项式 的公因式是               ;
2、若多项式 的一个因式是 ,那么另一个因式是(      )
 、       、      、       、
3、若 是 的因式,则p为(          )
a、-15          b、-2           c、8           d、2
4、把下列各式分解因式:
(1)          (2)

(3)            (4)

◆  考点三:提公因式法的应用
【例5】计算:(1)        (2)

◎ 变式议练三:
1、已知 , ,则              ;
2、计算:                        ;
3、已知 ,求 的值。

◆  考点四:能力拓展
【例6】已知 , ,求 的值;

【例7】已知: ,求代数式 的值。

【例8】已知整数 、 、 使等式 对任意的 均成立,求 的值;    (山东省竞赛题)

◎ 变式议练四:
1、多项式 可以分解为两个整式的积,其中一个整式为 ,求另一个整式;

2、分解因式:

3、(it杯赛)化简:  .

◆◆◆  快乐体验
将一个乒乓球的半径增加 ,其周长增加 ,将地球的半径增加 ,其周长增加 ,比较 与 的大小;

12

本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/1869.html

  • 中心对称和中心对称图形的区别_中心对称和中心对称图形

    教学建议 知识归纳 1.中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点. 中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中...

    发布于:2025-11-06

    详细阅读
  • [等腰三角形的判定]等腰三角形的判定

    知识结构: 重点与难点分析: 本节内容的重点是定理 本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点 推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关...

    发布于:2025-11-06

    详细阅读
  • 相似三角形的性质_相似三角形的性质 (第2课时)

    (第2课时) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题. 3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理的应用...

    发布于:2025-11-06

    详细阅读
  • 【二次根式的乘法】二次根式的乘法

    教学建议 知识结构: 重点难点分析: 本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简 积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础 二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起 本节难...

    发布于:2025-11-06

    详细阅读
  • 基本作图|基本作图

    教学目标 : 1、知识目标: (1)要掌握尺规作图的方法及一般步骤; (2)掌握五种,明确尺规作图的意义。 2、能力目标: (1)通过“作图题”练习,提高学生的几何语言表达能力; (2)通过画图,培养学生的作图能力及动手能力 3、情感目标: (1)体验数学语言的简洁严谨。 (2)体会数学作图语言和...

    发布于:2025-11-06

    详细阅读
  • [二次根式的混合运算]二次根式的混合运算

    教学建议 知识结构 重难点分析 本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路...

    发布于:2025-11-06

    详细阅读
  • 多边形的内角和|多边形的内角和 教学设计示例3

    一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想....

    发布于:2025-11-06

    详细阅读
  • 平行四边形的判定|平行四边形的判定 (第二课时)

    七、教学步骤 【引入新课】 由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题). 【讲解新课】 (1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形. 引导学生结合图1,把已知,求证具体化. 分析:因为已知,所以只须...

    发布于:2025-11-06

    详细阅读
  • [相似三角形的判定]相似三角形

    教学建议 知识结构 本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理 重难点分析 的概念是本节的重点也是本节的难点 是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性 ...

    发布于:2025-11-06

    详细阅读
  • 【最简二次根式】最简二次根式 教学设计示例5

    教学目标 1.使学生进一步理解最简二次根式的概念; 2.较熟练地掌握把一个式子化为最简二次根式的方法. 教学重点和难点 重点:较熟练地把二次根式化为最简二次根式. 难点:把被开方数是多项式和分式的二次根式化为最简二次根式. 教学过程设计 一、复习 1.把下列各式化为最简二次根式: 请说出第(3),...

    发布于:2025-11-06

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计