1.1的10次方是多少|1.1 轴对称和轴对称图形

八年级数学教案 2012-10-27 网络整理 晴天

【jiaoan.jxxyjl.com--八年级数学教案】

教学目标:
1、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展空间观念。
2、认识轴对称与轴对称图形,并能找出对称轴。
3、知道轴对称与轴对称图形的区别与联系。
4、欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛应用和它的丰富的文化价值。
教学重点:
正确辨认轴对称和轴对称图形,画出它们的对称轴。
教学难点:
设计简单轴对称图案。
教学程序:
一、创设情境:
让学生观察书p6图1—1、p7图1—4,讨论它们有什么共同特征。
提问:在我们生活中还有这样的图形吗?
二、探索活动:
1、实验、观察、思考:
       教师演示实验:(做出两种墨迹图形形状)
         如图1—2所示:一个是能独立的两个图形。
另一个是连在一起的两个图形。
观察这两幅图形,提出问题让学生讨论。
⑴折痕两边的墨迹图形形状一样吗?为什么?
⑵两边墨迹图形的位置与折痕有什么关系?
⑶两种墨迹图形各有什么区别与联系?
学生观察思考:
  把一节藕切成两段怎样将它们放在玻璃下方, 2个截面成轴对称。
(全等形放在同一平面内不一定是轴对称关系)
       2、学生看书比较、讨论、分析、探索思考:
⑴如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
⑵如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
⑶提问:轴对称与轴对称图形的区别与联系
区别:
⒈轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。
⒉轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
联系:
⒈两部分都完全重合,都有对称轴,都有对称点。
             ⒉如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。
3、巩固:学生说熟悉的轴对称图形,指出对称轴是什么?特殊的对称点。
学生口述对称轴的位置。
(轴对称图形:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、角、线段等。)4、学生操作剪纸:
得轴对称图形:书p8中的操作。
5、投影出示:欣赏大自然风景(倒影)并说出它们的对称轴的位置。
三、课堂巩固:
书p8的练习1、找出下列各轴对称图形的对称轴
2、找出正五边形(含对角线)的对称轴
四、本节课小结
学生谈收获:
1、知道什么是轴对称和轴对称图形,并能分清它们;
2、能画出对称轴、找出对称点。
3、能找生活中的轴对称和轴对称图形。
五、作业:
课堂作业:书p9习题1.1    3、
课外作业:配苏科版课程标准本《数学课课练》p1—3
       第一课 轴对称和轴对称图形

上一篇:1.5等腰三角形(3)

下一篇:1.5等腰三角形的轴对称性(2)

本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/1839.html

  • 中心对称和中心对称图形的区别_中心对称和中心对称图形

    教学建议 知识归纳 1.中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点. 中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中...

    发布于:2025-11-06

    详细阅读
  • [等腰三角形的判定]等腰三角形的判定

    知识结构: 重点与难点分析: 本节内容的重点是定理 本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点 推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关...

    发布于:2025-11-06

    详细阅读
  • 相似三角形的性质_相似三角形的性质 (第2课时)

    (第2课时) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题. 3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理的应用...

    发布于:2025-11-06

    详细阅读
  • 【二次根式的乘法】二次根式的乘法

    教学建议 知识结构: 重点难点分析: 本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简 积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础 二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起 本节难...

    发布于:2025-11-06

    详细阅读
  • 基本作图|基本作图

    教学目标 : 1、知识目标: (1)要掌握尺规作图的方法及一般步骤; (2)掌握五种,明确尺规作图的意义。 2、能力目标: (1)通过“作图题”练习,提高学生的几何语言表达能力; (2)通过画图,培养学生的作图能力及动手能力 3、情感目标: (1)体验数学语言的简洁严谨。 (2)体会数学作图语言和...

    发布于:2025-11-06

    详细阅读
  • [二次根式的混合运算]二次根式的混合运算

    教学建议 知识结构 重难点分析 本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路...

    发布于:2025-11-06

    详细阅读
  • 多边形的内角和|多边形的内角和 教学设计示例3

    一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想....

    发布于:2025-11-06

    详细阅读
  • 平行四边形的判定|平行四边形的判定 (第二课时)

    七、教学步骤 【引入新课】 由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题). 【讲解新课】 (1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形. 引导学生结合图1,把已知,求证具体化. 分析:因为已知,所以只须...

    发布于:2025-11-06

    详细阅读
  • [相似三角形的判定]相似三角形

    教学建议 知识结构 本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理 重难点分析 的概念是本节的重点也是本节的难点 是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性 ...

    发布于:2025-11-06

    详细阅读
  • 【最简二次根式】最简二次根式 教学设计示例5

    教学目标 1.使学生进一步理解最简二次根式的概念; 2.较熟练地掌握把一个式子化为最简二次根式的方法. 教学重点和难点 重点:较熟练地把二次根式化为最简二次根式. 难点:把被开方数是多项式和分式的二次根式化为最简二次根式. 教学过程设计 一、复习 1.把下列各式化为最简二次根式: 请说出第(3),...

    发布于:2025-11-06

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计