最简二次根式|最简二次根式 教学设计示例4
【jiaoan.jxxyjl.com--八年级数学教案】
教学目标
1.使学生理解最简二次根式的概念;
2.掌握把二次根式化为最简二次根式的方法.
教学重点和难点
重点:化二次根式为最简二次根式的方法.
难点:最简二次根式概念的理解.
教学过程 设计
一、导入 新课
计算:
我们再看下面的问题:
简,得到
从上面例子可以看出,如果把二次根式先进行化简,会对解决问题带来方便.
二、新课
答:
1.被开方数的因数是整数或整式;
2.被开方数中不含能开得尽方的因数或因式.
满足上面两个条件的二次根式叫做最简二次根式.
例1 试判断下列各式中哪些是最简二次根式,哪些不是?为什么?
解 (l)不是最简二次根式.因为a3=a2·a,而a2可以开方,即被开方数中有开得尽方的因式.
整数.
(3)是最简二次根式.因为被开方数的因式x2+y2开不尽方,而且是整式.
(4)是最简二次根式.因为被开方数的因式a-b开不尽方,而且是整式.
(5)是最简二次根式.因为被开方数的因式5x开不尽方,而且是整式.
(6)不是最简二次根式.因为被开方数中的因数8=22·2,含有开得尽的因数22.
指出:从(1),(2),(6)题可以看到如下两个结论.
1.在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
2.在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.
例2 把下列各式化为最简二次根式:
分析:把被开方数分解因式或因数,再利用积的算术平方根的性质
例3 把下列各式化成最简二次根式:
分析:题(l)的被开方数是带分数,应把它变成假分数,然后将分母有理化,把原式化成最简二次根式.
题(2)及题(3)的被开方数是分式,先应用商的算术平方根的性质把原式表示为两个根式的商的形式,再把分母有理化,把原式化成最简二次根式.
通过例2、例3,请同学们总结出把二次根式化成最简二次根式的方法.
答:如果被开方数是分式或分数(包括小数)先利用商的算术平方根的性质,把它写成分式的形式,然后利用分母有理化化简.
如果被开方数是整式或整数,先把它分解因式或分解因数,然后把开得尽方的因式或因数开出来,从而将式子化简.
三、课堂练习
1.在下列各式中,是最简二次根式的式子为 [ ]
的二次根式的式子有_____个. [ ]
A.2 B.3
C.1 D.0
3.把下列各式化成最简二次根式:
答案:
1.B
2.B
四、小结
1.最简二次根式必须满足两个条件:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽方的因数或因式.
2.把一个式子化为最简二次根式的方法是:
(1)如果被开方数是整式或整数,先把它分解成因式(或因数)的积的形式,把开得尽方的因式(或因数)移到根号外;
(2)如果被开方数含有分母,应去掉分母的根号.
五、作业
1.把下列各式化成最简二次根式:
2.把下列各式化成最简二次根式:
答案:
本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/164207.html
-
分式的加减法_分式的加减法详细阅读
教学目标: (1)理解通分的意义,理解最简公分母的意义; (2)掌握分式的通分法则,能熟练掌握通分运算。 教学重点:分式通分的理解和掌握。 教学难点:分式通分中最简公分母的确定。 教学工具:投影仪 教学方法:启发式、讨论式 教学过程: (一)引入 (1)如何计算: 由此让学生复习分数通分的意义、通分...
-
分式的基本性质|分式的基本性质详细阅读
第一课时 (一)教学过程 【复习提问】 1.分式的定义? 2.分数的基本性质?有什么用途? 【新课】 1.类比分数的基本性质,由学生小结出: 分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即: , (其中是不等于零的整式.) 2.加深对分式基本性质的理解: 例1 下列等式的右边...
-
三角形全等的判定3教学反思|三角形全等的判定3详细阅读
课题:三角形全等的判定(三) 教学目标: 1、知识目标: (1)掌握已知三边画三角形的方法; (2)掌握边边边公理,能用边边边公理证明两个三角形全等; (3)会添加较明显的辅助线 2、能力目标: (1)通过尺规作图使学生得到技能的训练; (2)通过公理的初步应用,初步培养学生的逻辑推理能力 3、...
-
【四边形的内角和是多少度】四边形详细阅读
教学建议 1.教材分析 (1)知识结构: (2)重点和难点分析: 重点:的有关概念及内角和定理 因为的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用 难点:的概念及不稳定性的理解和应用 在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就...
-
平行四边形及其性质_平行四边形及其性质详细阅读
教学建议 1.知识结构 2.重点和难点分析 重点:本节的重点是平行四边形的概念和性质 虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学 平行四边形的性质是以后证明四边形问题的基础,也是...
-
用计算器求平方根怎么求_用计算器求平方根详细阅读
教学设计示例 一.教学目标 1 会用计算器求数的平方根; 2 通过用计算器求值及近似值计算,提高学生的运算能力和动手能力; 3 通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣 二.教学重点与难点 教学重点:用计算器求一个正数的平方根的程序 教学难点 :准确用计算器求解一个...
-
[数学作图题]作图题举例详细阅读
(1)知识结构 重点与难点分析 本节内容的重点是根据基本作图作出符合要求的几何图形。几何作图题同一般画图题不同,它规定只准用直尺和圆规为工具,而且每一步作图都必须有根有据,这样有助于培养学生的逻辑推理能力;另外,以后复杂的作图题常用基本作图中的三角形作基础,通过三角形来完成。 本节内容的难点是如何...
-
[含字母系数的一元一次方程题目]含字母系数的一元一次方程详细阅读
教学目标 1.使学生正确认识含有字母系数的一元一次方程. 2.使学生掌握含有字母系数的一元一次方程的解法. 3.使学生会进行简单的公式变形. 4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力.5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣. 教学重点: (1)含有...
-
三角形全等的判定2教案|三角形全等的判定2详细阅读
课题:全等三角形的判定(二) 教学目标: 1、知识目标: (1)熟记角边角公理、角角边推论的内容; (2)能应用角边角公理及其推论证明两个三角形全等 2、能力目标: (1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力; (2)通过观察几何图形,培养学生的识图能力 3、情感目标: (1...
-
三角形全等的判定1教学反思|三角形全等的判定1详细阅读
课题:全等三角形的判定(一) 教学目标 : 1、知识目标: (1)熟记边角边公理的内容; (2)能应用边角边公理证明两个三角形全等 2、能力目标: (1) 通过“边角边”公理的运用,提高学生的逻辑思维能力; (2) 通过观察几何图形,培养学生的识图能力 3、情感目标: (1) 通过几何证明的教学...