定理与证明二次备课_定理与证明(二)
【jiaoan.jxxyjl.com--七年级数学教案】
一、教学目标
1.了解“证明”的必要性和推理过程中要步步有据.
2.了解综合法证明的格式和步骤.
3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.
4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.
5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.
二、学法引导
1.教师教法:尝试指导,引导发现与讨论相结合.
2.学生学法:在教师的指导下,积极思维,主动发现.
三、重点·难点及解决办法
(-)重点
证明的步骤和格式是本节重点.
(二)难点
理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.
(三)解决办法
通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.
四、课时安排
l课时
五、教具学具准备
投影仪、三角板、自制胶片.
六、师生互动活动设计
1.通过引例创设情境,点题,引入新课.
2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.
3.通过提问的形式完成小结.
七、教学步骤
(-)明确目标
使学生严密推理过程,掌握推理格式,提高推理能力。
(二)整体感知
以情境设计,引出课题,引导讨论,例题示范讲解新知,以练习巩固新知.
(三)教学过程
创设情境,引出课题
师:上节课我们学习了定理与证明,了解了这两个概念.并以证明“两直线平行,内错角相等”来说明什么是证明.我们再看这一命题的证明(投影出示).
例1 已知:如图1, , 是截线,求证: .
证明:∵ (已知),∴ (两直线平行,同位角相等).
∵ (对项角相等),∴ (等量代换).
这节课我们分析这一命题的证明过程,学习命题证明的步骤和格式.
[板书]2.9 定理与证明
探究新知
1.命题证明步骤
学生活动:由学生分组讨论以上命题的证明过程,按自己的理解说出证明一个命题都需要哪几步.
【教法说明】根据上一节“两直线平行,内错角相等”这一命题的证明过程让学生讨论、分析、归纳命题证明的一般步骤,一是可以加深对命题证明的理解,二是培养学生归纳总结能力。在总结步骤时,学生所说的层次不一定有逻辑性,或不太严密,教师要注意引导,使学生分清命题证明几个步骤的先后层次.
根据学生讨论,回答结果.教师归纳小结,师生共同得出证明命题的步骤(出示投影):
第一步,画出命题的图形.
先根据命题的题设即已知条件,画出图形,再把命题的结论即求证的内容在图上标出.还要根据证明的需要,在图上标出必要的字母或符号,以便于叙述或推理过程的表达.
第二步,结合图形写出已知、求证.
把命题的题设化为几何符号的语言写在已知中,命题的结论转化为几何符号的语言写在求证中.
第三步,经过分析,找出由已知推得求证的途径,写出推理的过程.
学生活动:结合“两直线平行,内错角相等”这一命题的证明,理解以上命题证明的一般步骤(给学生一定时间理解记忆).
【教法说明】在以上第二个步骤中,将文字语言转化为符号语言是教学中的难点,要注意在练习中加强辅导,第三步由学生独立完成有困难,要逐步培养训练,现阶段暂不要求学生独立完成.
反馈练习:(1)画出证明命题“两直线平行,同旁内角互补”时的图形,写出已知、求证.
(2)课本第112页A组第5题.
【教法说明】由学生依照例1“两直线平行,内错角相等”这一命题的证明画出图形,写出已知、求证,巩固命题证明的第一、二步.
2.命题的证明
例2 证明:邻补角的平分线互相垂直.
【教法说明】此例题完全放手让学生独立完成有一定困难,但教师也不能包办代替,最好通过让学生分步讨论,同桌互相磋商,分步完成的方法,使学生对命题证明的每一步都进一步理解,教师可以给学生指明思考步骤.
(1)分析命题的题设与结论,画出命题证明所需要的图形.
邻补角用图2表示:
图2
添画邻补角的平分线,见图3:
图3
(2)根据命题的题设与结论写出已知、求证.邻补角用几何符号语言提示: ,角平分线用几何符号语言表示: , ,求证邻补角平分钱互相垂直,用符号语言表示: .
(3)分析由已知谁出求证途径,写出证明过程.
有什么结论后可得 ( ),由已知可以推导 吗?学生讨论思考.
【教法说明】以上步骤的完成教师只提供思路,具体结论的得出与操作要由学生独立完成.找一个学生到黑板上板演,其他同学在练习本上写出完成整过程.
已知:如图, , , .
求证:
证明:∵ (已知),又∵ , (已知),∴ .
∴ (垂直定义).
证明完成后提醒学生注意以下几点:
①要证明的是一个简单叙述的命题,题设和结论不明显,可以先根据题意画出图形.如例2,结合图形分析命题的题设和结论.
②在写已知、求证的内容时,要将文字语言转化为符号语言来表示,转化时的写法也不是惟一的,要根据使用的方便来写,如: 与 互为邻补角,在已知中写为 ,角平分线有几种表示方法,如 是 的平分线, , ,根据此题写成 较好,方便于下面的推理计算.
③对命题的分析、画图,如何推理的思考过程,证明时不必写出来,不属于证明内容.
反馈练习:按证明命题的步骤证明:“两条直线被第三条直线所截,如果同位角相等,那么内错角相等.”
【教法说明】由学生独立完成,找学生板演,发现问题教师及时纠正.
3.判定一个命题是假命题的方法
师:以上我们的推理是说明一个命题是真命题的判定方法.那么如何判定一个命题是假命题呢?如“相等的角是对项角”,同学们都知道这是一个假命题,如何说明它是一个假命题呢?谁能试着说明一下?
【教法说明】教师先不告诉学生判定一个命题是假命题的方法,而是由很明显的“相等角是对顶角”这一假命题,让学生自己尝试着去说明,体验从反面去说明一个问题的方法,然后教师归纳小结.
根据学生说明,教师小结:
判定一个命题是假命题,只要举出一个反例即可,也就是说你所举命题符合命题的题设,但不满足结论.如“同位角相等”可如图, 与 是同位角但不相等就说明“同位角相等是假命题”.
反馈练习:课本第111页习题2.3A组第4题.
【教法说明】在做以上练习时一定让学生学会从反面思考问题的方法,再就是要澄清一些错误的概念.
反馈练习
投影出示以下练习:
1.指出下列命题的题设和结论
(1)两条平行线被第三条直线所截,同旁内角互补.
(2)两个角的和等于直角,这两个角互为余角.
(3)对项角相等.
(4)同角或等角的余角相等.
2.画图,写出已知,求证(不证明)
(1)同垂直于一条直线的两条直线平行.
(2)两条平行直线被第三条直线所截,同位角的平分线互相平行.
3.抄写下题并填空
已知:如图, .
求证: .
证明:∵ ( ),
∴ ( ).
∴ ( ).
【教法说明】以上练习让学生独立完成,第1题主要是训练学生分清命题的题设和结论;第2题是训练学生把命题转化为几何语言、几何图形的能力;第3题是让学生进一步体会命题证明的三个步骤.
总结、扩展
以提问的形式归纳出本节课的知识结构:
八、布置作业
(-)必做题
课本第110页习题2.3A组第3(2)、(3)、(4)题.
(二)思考题
课本第112页B组第l、2题.
作业 答案
A组(略)
B组1.已知两直线平行,同旁内角互补。
(两直线平行,同旁内角互补) (同角的补角相等).
2.已知:如图, , 、 分别平分 与 .求证: .
热门文章青少年思想道德建设
当前我国作文教学改革的新趋势
古诗三首(墨梅 竹石 石灰吟)
第一场雪
Unit 2 Look at me第五课时
植物妈妈有办法
威尼斯的小艇
等比数列的前n项和
相关文章·定理与证明(一)
·命题 教学设计方案(二)
·命题
·空间里的平行关系
·平行线的性质 教学设计方案(二)
·平行线的性质
·平行线的判定
·平行线的判定
本文来源:https://jiaoan.jxxyjl.com/qinianjishuxuejiaoan/48576.html
-
角的比较与运算_角的比较详细阅读
教学建议 一、知识结构 二、重点、难点分析 本节教学的重点是角的大小比较,角平分线的意义,两个角的和、差、倍、分的意义.难点是空间观念,几何识图能力的培养.的相关知识是进一步学习角的度量和画法,以及进一步研究平面几何图形的基础 1﹒角的大小的比较有两种方法: (1)重合法:即把要比较的两个角的顶点...
-
【等式和它的性质教案】等式和它的性质详细阅读
教学设计示例 一、素质教育目标 (一)知识起学点 1.理解:等式的意义,并能举出有关等式的例子. 2.掌握:关于等式变形的两条性质,并能语言叙述. 3.应用:会用等式的两条性质将等式变形,并能对变形说明理由. (二)能力训练点 通过等式的两条性质的教学,培养学生由等式走向新等式的解题思想,即为以后方...
-
平行线的性质_平行线的性质 教学设计方案(二)详细阅读
一、教学目标 1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质. 2.会用平行线的性质进行推理和计算. 3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力. 4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想. 二、...
-
[财务计算器简单计算]用计算器进行数的简单计算详细阅读
教学建议 一、重点、难点分析 本节教学的重点是会用计算器进行数的加、减、乘、除、乘方运算;难点是用交换键输入数字.关键是掌握计算器功能键的用法. 二、知识结构 三、教法建议 这一小节的教学需要注意: 1.目前在国内市场上,能见到的科学计算器的型号很多,这些计算器的功能基本相同,在面板的设计与使用方法...
-
[一元一次方程的解法教案]一元一次方程和它的解法详细阅读
教学目的1、使学生明白以公式中的一个字母为未知数,其他字母为已知数,求这个未知数的问题要转化为求以这个字母为未知数的一元一次方程的解。教学分析重点:求一个公式中的某一个字母的值。难点:求一个公式中的某一个字母的值。突破:把所给的公式看成是关于所求字母的一元一次方程。教学过程 一、复习1、x取什么值时...
-
线段的比较与画法教材分析_线段的比较与画法详细阅读
教学设计示例 教学目标 1.使学生在理解线段概念的基础上,了解线段的长度可以用正数来表示,因而线段可以度量、比较大小以及进行一些运算.使学生对几何图形与数之间的联系有一定的认识,从而初步了解数形结合的思想. 2.使学生学会线段的两种比较方法及表示法. 3.通过本课的教学,进一步培养学生的动手能力、观...
-
有理数的加法_有理数的加法详细阅读
教学目标 1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则; 2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别; 3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程; 4.通过有理数加法法则及运算律在加法运算中的运用,培...
-
【有理数的乘法】有理数的乘法详细阅读
教学目标 1 理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性; 2 能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则; 3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过...
-
【三元一次方程组的解法举例导学案】三元一次方程组的解法举例详细阅读
教学建议 一、重点、难点分析 本节教学的重点是掌握三元一次方程组的解法,教学难点是解法的灵活运用.能够熟练的解三元一次方程组是进一步学习一次方程组的应用,以及一次不等式组的解法的基础. 1.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,这样的方程组就是三元一次方程组. 2.三...
-
【代数式的值】代数式的值详细阅读
教学目标 1.使学生掌握的概念,能用具体数值代替代数式中的字母,求出; 2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。教学建议 1.重点和难点:正确地求出。 2.理解: (1)一个是由代数式中字母的取值而决定的.所以一般不是一个固定的数,它会随着代数式中字母取值的变化而变化.因...