数学教案初中多项式的乘法_数学教案-多项式的乘法
【jiaoan.jxxyjl.com--七年级数学教案】
教学建议
一、知识结构
二、重点、难点分析
本节教学的重点是利用公式(x+a)(x+b)=x2+(a+b)x+ab熟练地计算.难点是理解并掌握公式.本节内容是进一步学习乘法公式及后续知识的基础.
1.多项式乘法法则,是多次运用单项式与多项式相乘的法则得到的.计算 时,先把 看成一个单项式, 是一个多项式,运用单项式与多项式相乘的法则,得到
然后再次运用单项式与多项式相乘的法则,得到:
2.含有一个相同字母的两个一次二项式相乘,得到的积是同一字母的二次三项式,它的二次项由两个因式中的一次项相乘得到;积的一次项是由两个因式中的常数基分别乘以两个因式中的一次项后,合并同类项得到;积的常数项等于两个因式中常数项的积.如果因式中一次项的系数都是1,那么积的二次项系数也是1,积的一次项系数等于两个因式中的常数项的和,这就是说,如果用 、 分别表示一个含有系数是1的相同字母的两个一次二项式中的常数项,则有
3.在进行两个多项式相乘、直接写出结果时,注意不要“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多基同甘共苦的积.如 积的项数应是 ,即六项:
当然,如有同类项则应合并,得出最简结果.
4.运用多项式乘法法则时,必须做到不重不漏,为此,相乘时,要按一定的顺序进行.例如, ,可先用第一个多项式中的第一项“ ”分别与第二个多项式的每一项相乘,再用第一个多项式中的第二项“ ”分别与第二个多项式的每一项相乘,然后把所得的积相加,即 .
5.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.
6.注意确定积中每一项的符号,多项式中每一项都包含它前面的符号,“同号得正,异号得负”.
三、教法建议
教学时,应注意以下几点:
(1)要防止两个多项式相乘,直接写出结果时“漏项”.检查的办法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多项式项数的积.如 ,
积的项数应是 ,即四项 当然,如有同类项,则应合并同类项,得出最简结果.
(2)要不失时机地指出:多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定积中各项的符号.
(3)例2的第(1)小题是乘法的平方差公式,例2的第(2)小题是两数和的完全平方公式.实际上任何乘法公式都是直接用多项式乘法计算出来的.然后,我们把这种特殊形式的乘法连同它的结果作为公式.这里只是为后面学习乘法公式作准备,不必提它们是乘法公式,分散学生的注意力.当然,在讲解这个1题时,要讲清它们在合并同类项前的项数.
(4)例3是另一种形式的多项式的乘法,要讲清楚两个因式的特点,积与两个因式的关系.总之,要讲清楚这种特殊形式的两个多项式相乘的规律,使学生在计算这种类型的题目时,能够迅速地求得结果.如对于练习第1题中的
,
等等,能够直接写出结果.
教学设计示例
一、教学目标
1.理解和掌握单项式与多项式乘法法则及其推导过程.
2.熟练运用法则进行单项式与多项式的乘法计算.
3.通过用文字概括法则,提高学生数学表达能力.
4.通过反馈练习,培养学生计算能力和综合运用知识的能力.
5.渗透公式恒等变形的和谐美、简洁美.
二、学法引导
1.教学方法:讨论法、讲练结合法.
2.学生学法:本节主要学习了多项式的乘法法则和一个特殊的二项式乘法公式,在学习时应注意分析和比较这一法则和公式的关系,事实上它们是一般与特殊的关系.当遇到多项式乘法时,首先要看它是不是 的形式,若是则可以用公式直接写出结果,若不是再应用法则计算.
三、重点、难点及解决办法
(一)重点
多项式乘法法则.
(二)难点
利用单项式与多项式相乘的法则推导本节法则.
(三)解决办法
在用面积法推导多项式与多项式乘法法则过程中,应让学生充分理解多项式乘法法则的几何意义,这样既便于学生理解记忆公式,又能让学生在解题过程中准确地使用.
四、课时安排
一课时.
五、教具学具准备
投影仪或电脑、自制胶片、长方形演示纸板.
六、师生互动活动设计
1.设计一组练习,以检查学生单项式乘以多项式的掌握情况.
2.尝试从多角度理解多项式与多项式乘法:
(1)把 看成一单项式时,
.
(2)把 看成一单项式时,
.
(3)利用面积法
3.在理解上述过程的基础之上,引导学生归纳并指出多项式乘法的规律.
4.通过举例,教师的示范,学生的尝试练习,不断巩固新学的知识.对于遇到的特殊二项式相乘可利用特殊的公式加以解决,并注意一般与特殊的关系.
七、教学步骤
(一)明确目标
本节课将学习多项式与多项式相乘的乘法法则及其特殊形式的公式的应用.
(二)整体感知
多项式与多项式的相乘关键在于展开式中的四项是如何得到的,这里教师应注重引导学生细心观察、品味法则的规律性,实质就在于让一个多项式的每一项与另一个多项式的每一项遍乘既不能漏又不能重复.对特殊的多项式相乘可运用特殊的办法去处理
(三)教学过程
1.创设情境,复习导入
(1)回忆单项式与多项式的乘法法则.
(2)计算:
① ②
③ ④
学生活动:学生在练习本上完成,然后回答结果.
【教法说明】多项式乘法是以单项式乘法和单项式与多项式相乘为基础的,通过复习引起学生回忆,为本节学习提供铺垫和思想基础.
2.探索新知,讲授新课
今天,我们在以前学习的基础上,学习多项式的乘法.
多项式的乘法就是形如 的计算.
这里 都表示单项式,因此 表示多项式相乘,那么如何对 进行计算呢?若把 看成一个单项式,能否利用单项式与多项式相乘的法则计算呢?请同桌同学互相讨论,并试着进行计算.
学生活动:同桌讨论,并试着计算(教师适当引导),学生回答结论.
【教法说明】多项式乘法法则,是两次运用单项式与多项式相乘的法则得到的.这里的关键在于让学生理解,将 看成一个单项式,然后运用单项式与多项式相乘的法则进行计算,让学生讨论并试着计算,目的是培养学生分析问题、解决问题的能力,鼓励学生积极探索知识、善于发现规律、主动参与学习.
3.总结规律,揭示法则
对于 的计算过程可以表示为:
教师引导学生用文字表述多项式乘法法则:
多项式与多项式相乘,先用一个多项式的第一项乘另一个多项式的每一项,再把所得的积相加.
如计算 : 看成公式中的 ;-1看成公式中的 ; 看成公式中的 ;3看成公式中的 .运用法则 中的每一项分别去乘 中的每一项,计算可得: .
学生活动:在教师引导下细心观察、品味法则.
【教法说明】借助算式图,指出 的得出过程,实质就是用一个多项式的“每一项”乘另一个多项式的“每一项”,再把所得积相加的过程.可以达到两个目的:一是直观揭示法则,有利于学生理解;二是防止学生出现运用法则进行计算时“漏项”的错误,强调法则,加深理解,同时明确多项式是单项式的和,每一项都包括前面的符号.
这个法则还可利用一个图形明显地表示出来.
(1)这个长方形的面积用代数式表示为_____________.
(2)Ⅰ的面积为________;Ⅱ的面积为________;Ⅲ的面积为________;Ⅳ的面积为_______.
结论:即.
学生活动:随着教师的演示,边思考,边回答问题.
【教法说明】利用图形的直观性,使学生进一步理解、掌握这一法则,渗透数形结合的思想,培养学生观察、分析图形的能力.
4.运用知识,尝试解题
例1 计算:
(1) (2)
(3)
解:(1)原式
(2)原式
(3)原式
【教法说明】例1的目的是熟悉、理解法则.完成例1时,要求学生紧扣法则,按法则的文字叙发“一步步”解题,注意最后要合并同类项.让学生参与例题的解答,旨在强化学生的参与意识,使其主动思考.
例2 计算:
(1) (2)
学生活动:在教师引导下,说出解题过程.
解:(1)原式
(2)原式
【教法说明】例2的两个小题是后面要讲到的乘法公式,但目前仍按多项式乘法法则计算,无需说明它们是乘法公式,此题的目的在于为后面的学习做准备.
5.强化训练,巩固知识
(1)计算:
① ②
③ ④
⑤ ⑥
(2)计算:
① ②
③ ④
⑤ ⑥
⑦ ⑧
学生活动:学生在练习本上完成.
【教法说明】本组练习的目的是:①使学生进一步理解法则,熟练运用法则进行计算.②训练学生计算的准确性,培养计算能力.③对乘法公式先有一个模糊印象,为以后的学习打下基础.
(四)总结、扩展
这节课我们学习了多项式乘法法则,请同学们回答问题:
1.叙述多项式乘法法则.
2.谈谈这节课你的学习体会.
学生活动:学生分别回答上述问题.
【教法说明】通过让学生自己谈学习体会,既可以达到总结归纳本节知识的目的,形成完整印象,又可以提高学生的总结概括能力.
八、布置作业
P120 A组 1.(1)(3)(5)(7),2.(2)(3),3.(1)(3)(8).
参考答案
1.(1)原式
(3)原式
(5)原式
(7)原式
2.(2)原式
(3)原式
3.(1)原式
(3)原式
(8)原式
本文来源:https://jiaoan.jxxyjl.com/qinianjishuxuejiaoan/48522.html
-
【中线定理证明】定理与证明(一)详细阅读
教学建议 (一)教材分析 1、知识结构 2、重点、难点分析 重点:真命题的证明步骤与格式.命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将会有大量的证明问题;另一方面它还体现了数学的逻辑性和严谨性. 难点:推论证明的思路和方法.因为它体现了学生的抽象思维能力,由于学生...
-
平行线的性质_平行线的性质 教学设计方案(二)详细阅读
一、教学目标 1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质. 2.会用平行线的性质进行推理和计算. 3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力. 4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想. 二...
-
绝对值|绝对值详细阅读
教学目标 1.了解的概念,会求有理数的; 2.会利用比较两个负数的大小; 3.在概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.教学建议 一、重点、难点分析 概念 既是本节的教学重点又是教学难点。关于的概念,需要明确的是无论是的几何定义,还是的代数定义,都揭示了的一个重要性质——非...
-
[有理数的加法]有理数的加法详细阅读
教学目标 1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则; 2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别; 3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程; 4.通过有理数加法法则及运算律在加法运算中的运用,培...
-
【一元一次方程的应用】一元一次方程的应用详细阅读
教学设计示例 教学目标 1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题; 2.培养学生观察能力,提高他们分析问题和解决问题的能力; 3.使学生初步养成正确思考问题的良好习惯. 教学重点和难点 一元一次方程解简单的应用题的方法和步骤. 课堂教学过程设计 一、...
-
去括号与添括号教案|去括号与添括号详细阅读
教学目标 1.使学生初步掌握去括号、添括号的法则; 2.会运用去括号法则,会按照法则,并根据要求添括号; 3.通过的学习,渗透对立统一的思想.教学建议 一、重点、难点分析 去括号、添括号法则既是本课的重点,又是难点,突破的关键是无论去括号,还是添括号,认真把握法则要点,注意形成技能. ①关于去括号:...
-
【同底数幂的乘法】同底数幂的乘法详细阅读
(一) 一、素质教育目标 1.理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质. 2.能够熟练运用性质进行计算. 3.通过推导运算性质训练学生的抽象思维能力. 4.通过用文字概括运算性质,提高学生数学语言的表达能力. 5.通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度....
-
【单项式与多项式相乘】单项式与多项式相乘详细阅读
教学建议 一、知识结构 二、重点、难点分析 本节教学的重点是掌握的法则.难点是正确、迅速地进行的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。 1.,就是用单项式去乘多项式的每一项,再把所得的积相加,即 其中, 可以表示一个数、一个字母,也可以是一个代数式. 2.利用法则进...
-
【有理数的乘方】有理数的乘方详细阅读
一、素质教育目标 (一)知识教学点 1.理解有理数乘方的意义. 2.掌握有理数乘方的运算. (二)能力训练点 1.培养学生观察、分析、比较、归纳、概括的能力. 2.渗透转化思想. (三)德育渗透点:培养学生勤思、认真和勇于探索的精神. (四)美育渗透点 把记成,显示了乘方符号的简洁美. 二、学法引导...
-
方程和它的解教学设计_方程和它的解详细阅读
一、素质教育目标 (一)知识教学点 1.通过本节知识的学习,使学生清楚了解方程、方程的解的概念,以及解方程的含义. 2.让学生学会根据条件列出方程. (二)能力训练点 1.通过例2的教学,培养学生解决数学问题的思想方法和综合分析问题的思维能力. 2.通过例3方程的解的检验问题培养学生准确解题的能力及...