数学教案命题_数学教案-命题 教学设计方案(二)
【jiaoan.jxxyjl.com--七年级数学教案】
教学目标
1.使学生了解命题、真命题和假命题等概念.
2.使学生了解几何命题是由“题设”和“结论”两部分组成.能够初步区分命题的题设和结论,或把命题改写成“如果……,那么……”的形式
重点和难点
分清命题的题设和结论,既是教学的重点又是教学的难点.
教学过程
一、引入
请大家随意说出一些语句,教师把它们写在黑板上.如:
(1)对顶角相等吗?
(2)作一条线段AB=2cm;
(3)我爱初二(1)班;
(4)两直线平行,同位角相等;
(5)相等的两个角,一定是对顶角.
二、新课
问:上述语句中,哪些是判断一件事情的句子?
答:(3)、(4)、(5)是判断一件事情的句子.
教师指出:判断是对事物进行肯定或否定的一种思维形式,判断一件事情的句子,叫做命题.数学课堂里,只研究数学命题,如(4)、(5).
例1 请大家说出若干个(数学)命题,再分析一下,每一个命题由几部分组成?
(1)等角的补角相等;
(2)有理数一定是自然数;
(3)内错角相等两直线平行;
(4)如果a是有理数,那么a2>a;
(5)每一个大于4的偶数都可以表示成两个质数之和(即著名的哥德巴赫猜想).
教师启发学生得出:一个命题,由题设和结论两部分组成,都可以写成“如果……,那么……”的形式,也可以简称为“若A则B”.
练习:把上述(1)至(5),都按“如果……,那么……”的形式,表述一遍.
例2 在例1的(1)至(5)个命题中,所作的判断是否都正确?怎么检验各个命题的真伪?
(l)“如果两个角是等角的补角,那么这两个角相等.”是正确的命题,已经由补角的定义得到证明.
(2)“如果是有理数,那么它一定是自然数”。是不正确的命题(判断),反例如是有理数但不是自然数。
(3)“如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.”是正确的命题,已证.
(4)“如果a是有理数,那么a2>a.”是不正确的命题,反例如a=1,a2=a.
(5)“如果是一个大于4的偶数,那么它可以表示成两个质数之和.”这个命题,至今没人举出一个反例,说明它不正确;也没有人完全证明它正确.我国著名数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”,即已经证明了“ 1+2”,离“ 1+1”这颗数学王冠上的珍珠,只差“一步之遥”.这是目前世界上对这个命题的真伪的判定,所能达到的最好结果.
教师帮助学生归纳:命题既然是一个判断,就有判断是否正确的区别.
真命题---如果题设成立那么结论一定成立,这样的命题叫做真命题.
假命题---如果题设成立,不能保证结论总是成立,也就是说结论不成立,这样的命题叫做假命题.注意:不是命题与假命题的区别!
怎样判断一个命题的真假?检验真理的唯一标准是实践.数学中,判断一个命题是真命题,要经过证明(或以公理形式,即由实践证明的形式出现);判断一个命题是假命题,只需举出一个反例即可.
例3 试将下列各个命题的题设和结论相互颠倒或变为否定式,得到新的命题,并判断这些命题的真假.
(1)对顶角相等;
(2)两直线平行,同位角相等;
(3)若a=0,则ab=0;
(4)两条直线不平行,则一定相交;
(5)凡相等的角都是直角.
解:
(l)对顶角相等(真);
相等的角是对顶角(假);
不是对顶角不相等(假);
不相等的角不是对顶角(真).
(2)两直线平行,同位角相等(真);
同位角相等,两直线平行(真);
两直线不平行,同位角不相等(真);
同位角不相等,两直线不平行(真).
(3)若a=0,则ab=0(真);
若ab=0,则a=0(假);
若a≠0,则ab≠0(假);
若ab≠0,则a≠0(真).
(4)两条直线不平行,则一定相交(假);
两条直线相交,则一定不平行(真);
两条直线平行,则一定不相交(真);
两条直线不相交,则一定平行(假).
(注)本小题如果添上“在同一平面内”的大前提条件,那么假命题将变为真命题.
(5)凡相等的角都是直角(假);
凡直角都相等(真);
凡不相等的角不都是直角(真);
凡不都是直角的角不相等(假).
说明:本例,尤其是第(5)小题,视学生接受情况,教师灵活掌握.讲还是不讲,讲到什么程度,介不介绍四种命题(原、逆、否、逆否),都有较大的伸缩性.
小结:
命题---判断一件事情的句子;
命题的结构---;如果(题设)……,那么(结论)……;
命题的真假---正确或错误的判断;
四种命题---原、逆、否、逆否.
(用投影片显示或挂小黑板)
三、作业
1.在下列语句中,指出哪些是命题,哪些不是命题.如果是命题,指出命题的真假,并仿照例3说出一些新的命题来.
(l)如果AB⊥CD于O,那么∠AOC=90°;
(2)取线段AB的中点C;
(3)两条直线相交,有且只有一个交点;
(4)一个平角的度数是180°;
(5)若a=b,则a2=b2;
(6)如果一个数的末位数字是0,那么它一定能够被5整除;
(7)同角的余角相等;
(8)周角的一半等于直角.
2.选作题
判断命题“如果n是自然数,那么n2+n+17是质数”的真假.
本文来源:https://jiaoan.jxxyjl.com/qinianjishuxuejiaoan/48502.html
-
[直线电机]直线详细阅读
教学设计示例 一、素质教育目标 (一)知识教学点 1.了解的概念. 2.掌握的表示方法,的公理和相交的概念. 3.使学生熟悉简单的几何语句,并能画出正确的图形表示几何语句. (二)能力训练点 通过一些几何语句(如:某点在上,即“经过”这点;过两点有且只有一条,“有且只有”的双重含义,即存在性和惟一性...
-
单项式与多项式相乘|单项式与多项式相乘详细阅读
教学建议 一、知识结构 二、重点、难点分析 本节教学的重点是掌握的法则.难点是正确、迅速地进行的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。 1.,就是用单项式去乘多项式的每一项,再把所得的积相加,即 其中, 可以表示一个数、一个字母,也可以是一个代数式. 2.利用法则进...
-
[角的度量]角的度量详细阅读
教学建议 一、知识结构 二、重点、难点分析 本节教学的重点是角度计算中的进位制问题、互余与互补的概念;难点是互余与互补概念的理解和应用.熟练掌握的相关知识可以为进一步研究相交线、平行线打下基础. 1.度、分、秒的互换:如果一个角比1°还小,那么怎样度量它的大小?为了更精密地度量角.我们把1°的角6...
-
同底数幂的乘法二次备课_同底数幂的乘法(二)详细阅读
一、教学目标 1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算. 2.培养学生运用公式熟练进行计算的能力. 3.培养学生善于分析问题和解决问题的能力,激发学生勇往直前的斗志. 4.渗透数学公式的结构美、和谐美. 二、学法引导 1.教学方法:讲授法、练习法. 2.学生学法:勤于练习,在练习...
-
有理数的混合运算_有理数的混合运算详细阅读
一、素质教育目标 (一)知识教学点 能按照有理数的运算顺序,正确熟练地进行有理数的加、减、乘、除、乘方的混合运算. (二)能力训练点 培养学生的观察能力和运算能力. (三)德育渗透点 培养学生在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,最后要验算的好的习惯. (四)美育渗透点 通过本节课的...
-
【定理与证明二次备课】定理与证明(二)详细阅读
一、教学目标 1.了解“证明”的必要性和推理过程中要步步有据. 2.了解综合法证明的格式和步骤. 3.通过一些简单命题的证明,初步训练学生的逻辑推理能力. 4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力. 5.通过举例判定一个命题是假命题,使学...
-
同底数幂的乘法_同底数幂的乘法详细阅读
(一) 一、素质教育目标 1.理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质. 2.能够熟练运用性质进行计算. 3.通过推导运算性质训练学生的抽象思维能力. 4.通过用文字概括运算性质,提高学生数学语言的表达能力. 5.通过学生自己发现问题,培养他们解决问题的能力,进而培养他们积极的学习态度....
-
【同底数幂的除法】同底数幂的除法 第二课时详细阅读
同底数幂的除法(第二课时) 一、教学目标 1.理解并掌握零指数幂和负指数幂公式并能运用其进行熟练计算 2.培养学生抽象的数学思维能力 3.通过例题和习题,训练学生综合解题的能力和计算能力 4.渗透公式自向运用与逆向运用的辩证统一的数学思维观点 二、重点·难点 1.重点 理解和应用负整数指数幂...
-
[幂的乘方与积的乘方二教学视频]幂的乘方与积的乘方(二)详细阅读
一、教学目标 1.进一步理解积的乘方的运算性质,准确掌握积的乘方的运算性质,熟练应用这一性质进行有关计算. 2.通过推导性质进一步训练学生的抽象思维能力,通过完成例2,培养学生综合运用知识的能力. 3.培养实事求是、严谨、认真、务实的学习态度. 4.渗透数学公式的结构美、和谐美. 二、学法引导 1...
-
【整式的加减】整式的加减详细阅读
教学设计示例 一、素质教育目标 (一)知识教学点 1.理解:实质就是去括号,合并同类项. 2.掌握:学生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤. 3.运用:能够正确地进行运算. (二)能力训练点 1.培养用代数的方法解决实际生活中的问题的能力和口头表达能力. 2.培养学生用...