2.2.1.3.3.4_collections.apk|2.2.1 提公因式法(一)

九年级数学教案 2016-02-27 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】


第二课时●课  题§2.2.1  提公因式法(一)●教学目标 (一)教学知识点让学生了解多项式公因式的意义,初步会用提公因式法分解因式.(二)能力训练要求通过找公因式,培养学生的观察能力.(三)情感与价值观要求在用提公因式法分解因式时,先让学生自己找公因式,然后大家讨论结果的正确性,让学生养成独立思考的习惯,同时培养学生的合作交流意识,还能使学生初步感到因式分解在简化计算中将会起到很大的作用.●教学重点能观察出多项式的公因式,并根据分配律把公因式提出来.●教学难点 让学生识别多项式的公因式.●教学方法独立思考——合作交流法.●教具准备投影片两张第一张(记作§2.2.1 A)第二张(记作§2.2.1 B)●教学过程 Ⅰ.创设问题情境,引入新课投影片(§2.2.1 A)一块场地由三个矩形组成,这些矩形的长分别为 , , ,宽都是 ,求这块场地的面积.解法一:S=× + × + × =+ + =2解法二:S=× + × + × =( + + )=×4=2[师]从上面的解答过程看,解法一是按运算顺序:先算乘,再算和进行的,解法二是先逆用分配律算和,再计算一次乘,由此可知解法二要简单一些.这个事实说明,有时我们需要将多项式化为积的形式,而提取公因式就是化积的一种方法.Ⅱ.新课讲解1.公因式与提公因式法分解因式的概念.[师]若将刚才的问题一般化,即三个矩形的长分别为abc,宽都是m,则这块场地的面积为ma+mb+mc,或ma+b+c),可以用等号来连接.ma+mb+mc=ma+b+c)从上面的等式中,大家注意观察等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?[生]等式左边的每一项都含有因式m,等式右边是m与多项式(a+b+c)的乘积,从左边到右边是分解因式.[师]由于m是左边多项式ma+mb+mc的各项mambmc的一个公共因式,因此m叫做这个多项式的各项的公因式.由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法.2.例题讲解[例1]将下列各式分解因式:(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.分析:首先要找出各项的公因式,然后再提取出来.[师]请大家互相交流.[生]解:(1)3x+6=3x+3×2=3(x+2);(2)7x2-21x=7x·x-7x·3=7xx-3);(3)8a3b2-12ab3c+abc=8a2b·ab-12b2c·ab+ab·c=ab(8a2b-12b2c+c)(4)-24x3-12x2+28x=-4x(6x2+3x-7)3.议一议[师]通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.[生]首先找各项系数的最大公约数,如8和12的最大公约数是4.其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最低的.4.想一想[师]大家总结得非常棒.从例1中能否看出提公因式法分解因式与单项式乘以多项式有什么关系?[生]提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.Ⅲ.课堂练习(一)随堂练习1.写出下列多项式各项的公因式.(1)ma+mb  (m)(2)4kx-8ky  (4k)(3)5y3+20y2  (5y2)(4)a2b-2ab2+ab  (ab)2.把下列各式分解因式(1)8x-72=8(x-9)(2)a2b-5ab=aba-5)(3)4m3-6m2=2m2(2m-3)(4)a2b-5ab+9b=ba2-5a+9)(5)-a2+abac=-(a2-ab+ac)=-aab+c)(6)-2x3+4x2-2x=-(2x3-4x2+2x)=-2xx2-2x+1)(二)补充练习投影片(§2.2.1 B)把3x2-6xy+x分解因式[生]解:3x2-6xy+x=x(3x-6y)[师]大家同意他的做法吗?[生]不同意.改正:3x2-6xy+x=x(3x-6y+1)[师]后面的解法是正确的,出现错误的原因是受到1作为项的系数通常可以省略的影响,而在本题中是作为单独一项,所以不能省略,如果省略就少了一项,当然不正确,所以多项式中某一项作为公因式被提取后,这项的位置上应是1,不能省略或漏掉.在分解因式时应如何减少上述错误呢?将x写成x·1,这样可知提出一个因式x后,另一个因式是1.Ⅳ.课时小结1.提公因式法分解因式的一般形式,如:ma+mb+mc=ma+b+c).这里的字母abcm可以是一个系数不为1的、多字母的、幂指数大于1的单项式.2.提公因式法分解因式,关键在于观察、发现多项式的公因式.3.找公因式的一般步骤(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.4.初学提公因式法分解因式,最好先在各项中将公因式分解出来,如果这项就是公因式,也要将它写成乘1的形式,这样可以防范错误,即漏项的错误发生.5.公因式相差符号的,如(xy)与(yx)要先统一公因式,同时要防止出现符号问题.Ⅴ.课后作业 习题2.21.解:(1)2x2-4x=2xx-2);(2)8m2n+2mn=2mn(4m+1);(3)a2x2yaxy2=axyaxy);(4)3x3-3x2-9x=3xx2-x-3);(5)-24x2y-12xy2+28y3=-(24x2y+12xy2-28y3)=-4y(6x2+3xy-7y2);(6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1);(7)-2x2-12xy2+8xy3=-(2x2+12xy2-8xy3)=-2xx+6y2-4y3);(8)-3ma3+6ma2-12ma=-(3ma3-6ma2+12ma)=-3maa2-2a+4);2.利用因式分解进行计算(1)121×0.13+12.1×0.9-12×1.21=12.1×1.3+12.1×0.9-1.2×12.1=12.1×(1.3+0.9-1.2)=12.1×1=12.1(2)2.34×13.2+0.66×13.2-26.4=13.2×(2.34+0.66-2)=13.2×1=13.2(3)当R1=20,R2=16,R3=12,π=3.14时πR12+πR22+πR32=πR12+R22+R32)=3.14×(202+162+122)=2512Ⅳ.活动与探究利用分解因式计算:(1)32004-32003;(2)(-2)101+(-2)100.解:(1)32004-32003=32003×(3-1)=32003×2=2×32003(2)(-2)101+(-2)100=(-2)100×(-2+1)=(-2)100×(-1)=-(-2)100=-2100●板书设计 §2.2.1  提公因式法(一)一、1.公因式与提公因式法分解因式的概念2.例题讲解(例1)3.议一议(找公因式的一般步骤)4.想一想二、课堂练习1.随堂练习2.补充练习三、课时小结四、课后作业 ●备课资料参考练习一、把下列各式分解因式:1.2a-4b;2.ax2+ax-4a;3.3ab2-3a2b;4.2x3+2x2-6x;5.7x2+7x+14;6.-12a2b+24ab2;7.xyx2y2-x3y3;8.27x3+9x2y.参考答案:1.2(a-2b);2.ax2+x-4);3.3abba);4.2xx2+x-3);5.7(x2+x+2);6.-12aba-2b);7.xy(1-xyx2y2);8.9x2(3x+y). 

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38381.html

  • 正弦和余弦_正弦和余弦

    教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三...

    发布于:2025-12-31

    详细阅读
  • [圆的内接四边形有什么性质]圆的内接四边形

    1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...

    发布于:2025-12-31

    详细阅读
  • 【扇形所含弓形的面积】圆、扇形、弓形的面积

    (一) 教学目标 : 1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算; 2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力; 3、在扇形面积公式的推导和例题教学过程 中,渗透“从特殊到一般,再由一般到特殊”的辩证思想. 教学重点:扇形面积公式的导出及应用....

    发布于:2025-12-31

    详细阅读
  • 方差公式|方差

    教学设计示例1第一课时 素质教育目标 (一)知识教学点 使学生了解、标准差的意义,会计算一组数据的与标准差 (二)能力训练点 1.培养学生的计算能力 2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力 (三)德育渗透点 1.培养学生认真、耐心、细致的学习态度和学习习惯 2.渗透数学...

    发布于:2025-12-31

    详细阅读
  • 两圆的公切线条数|两圆的公切线

    第一课时 (一) 教学目标 : (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点 : 两圆外公切线和两圆外公切线长学生理解的不透,...

    发布于:2025-12-31

    详细阅读
  • 二次函数y=ax2的图象和性质|二次函数y=ax2的图象

    教学设计示例1 课题:二次函数 的图象 教学目标: 1、会用描点法画出二次函数 的图象; 2、根据图象观察、分析出二次函数 的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由特殊到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探...

    发布于:2025-12-31

    详细阅读
  • [圆的内接四边形有什么性质]圆的内接四边形

    1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...

    发布于:2025-12-31

    详细阅读
  • [相切约束的作图原理]相切在作图中的应用

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...

    发布于:2025-12-31

    详细阅读
  • 【圆周角定理】圆周角

    第一课时 (一) 教学目标 : (1)理解的概念,掌握的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:的概念和定理 教学难点 :定理的证明中由“一般到特殊”的数学思想方法和完全归纳...

    发布于:2025-12-31

    详细阅读
  • 可化为一元二次方程的分式方程的解法_可化为一元二次方程的分式方程

    一、教学目标 1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根 2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点 二、重点·难点·疑点及解决办法 1.教学重点:的解法. 2.教学难点...

    发布于:2025-12-31

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计