【圆周角定理】圆周角

九年级数学教案 2016-02-27 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】

第一课时 圆周角(一)
    教学目标:
    (1)理解圆周角的概念,把握圆周角的两个特征、定理的内容及简单应用;
    (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;
    (3)渗透由“非凡到一般”,由“一般到非凡”的数学思想方法.
    教学重点:圆周角的概念和圆周角定理
    教学难点:圆周角定理的证实中由“一般到非凡”的数学思想方法和完全归纳法的数学思想.
    教学活动设计:(在教师指导下完成)
    (一)圆周角的概念
    1、复习提问:
    (1)什么是圆心角?
    答:顶点在圆心的角叫圆心角.
    (2)圆心角的度数定理是什么?
    答:圆心角的度数等于它所对弧的度数.(如右图)
    2、引题圆周角:
    假如顶点不在圆心而在圆上,则得到如左图的新的角∠acb,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)
    定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角
    3、概念辨析:
    教材p93中1题:判定下列各图形中的是不是圆周角,并说明理由.
    学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.
    (二)圆周角的定理
    1、提出圆周角的度数问题
    问题:圆周角的度数与什么有关系?
    经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注重弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.
    (在教师引导下完成)
    (1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.
    提出必须用严格的数学方法去证实.
    证实:(圆心在圆周角上)
    (2)其它情况,圆周角与相应圆心角的关系:
    当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.
    证实:作出过c的直径(略)
    圆周角定理: 一条弧所对的
    周角等于它所对圆心角的一半.
    说明:这个定理的证实我们分成三种情况.这体现了数学中的分类方法;在证实中,后两种都化成了第一种情况,这体现数学中的化归思想.(对a层学生渗透完全归纳法)
    (三)定理的应用
    1、例题: 如图 oa、ob、oc都是圆o的半径, ∠aob=2∠boc.
    求证:∠acb=2∠bac
    让学生自主分析、解得,教师规范推理过程.
    说明:①推理要严密;②符号“”应用要严格,教师要讲清.
    2、巩固练习:123
    (1)如图,已知圆心角∠aob=100°,求圆周角∠acb、∠adb的度数?
    (2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?
    说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个.
    (四)总结
    知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.
    思想方法:一种方法和一种思想:
    在证实中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.
    (五)作业 教材p100中 习题a组6,7,8
    第二、三课时 圆周角(二、三)
    教学目标:
    (1)把握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证实;
    (2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;
    (3)培养添加辅助线的能力和思维的广阔性.
    教学重点:圆周角定理的三个推论的应用.
    教学难点:三个推论的灵活应用以及辅助线的添加.
    教学活动设计:
    (一)创设学习情境
    问题1:画一个圆,以b、c为弧的端点能画多少个圆周角?它们有什么关系?
    问题2:在⊙o中,若 = ,能否得到∠c=∠g呢?根据什么?反过来,若土∠c=∠g ,是否得到 = 呢?
    (二)分析、研究、交流、归纳
    让学生分析、研究,并充分交流.
    注重:①问题解决,只要构造圆心角进行过渡即可;②若 = ,则∠c=∠g;但反之不成立.
    老师组织学生归纳:
    推论1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.
    重视:同弧说明是“同一个圆”; 等弧说明是“在同圆或等圆中”.
    问题: “同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)
    问题3:(1)一个非凡的圆弧——半圆,它所对的圆周角是什么样的角?
    (2)假如一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?
    学生通过以上两个问题的解决,在教师引导下得推论2:
    推论2: 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦直径.
    指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练把握.
    启发学生根据推论2推出推论3:
    推论3:假如三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.
    指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.
    (三)应用、反思
    例1、如图,ad是△abc的高,ae是△abc的外接圆直径.
    求证:ab·ac=ae·ad.123
    对a层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.
    交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).
    解(略)
    教师引导学生思考:(1)此题还有其它证法吗? (2)比较以上证法的优缺点.
    指出:在解圆的有关问题时,经常需要添加辅助线,构成直径上的圆周角,以便利用直径上的圆周角是直角的性质.
    变式练习1:如图,△abc内接于⊙o,∠1=∠2.
    求证:ab·ac=ae·ad.
    变式练习2:如图,已知△abc内接于⊙o,弦ae平分
    ∠bac交bc于d.
    求证:ab·ac=ae·ad.
    指出:这组题目比较典型,圆和相似三角形有密切联系,证实圆中某些线段成比例,经常需要找出或通过辅助线构造出相似三角形.
    例2:如图,已知在⊙o中,直径ab为10厘米,弦ac为6厘米,∠acb的平分线交⊙o于d;
    求bc,ad和bd的长.
    解:(略)
    说明:充分利用直径所对的圆周角为直角,解直角三角形.
    练习:教材p96中1、2
    (四)小结(指导学生共同小结)
    知识:本节课主要学习了圆周角定理的三个推论.这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练把握.
    能力:在解圆的有关问题时,经常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技能技巧一定要把握.
    (五)作业
    教材p100.习题a组9、10、12、13、14题;另外a层同学做p102b组3,4题.
    探究活动
    我们已经学习了“圆周角的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.
    提示:(1)连结bc,可得∠e= ( 的度数— 的度数)
    (2)延长ae、ce分别交圆于b、d,则∠b= 的度数,
    ∠c= 的度数,
    ∴∠aec=∠b ∠c= ( 的度数 的度数).123

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38378.html

  • 【平面直角坐标系】平面直角坐标系

    1、教材分析: ⑴知识结构: 日常生活及其它学科需要一种确定平面内点的位置的方法 在数学上,可以类比数轴,引出的概念 完成了坐标平面内的点与有序实数对的一一对应,也把数与形统一了起来 ⑵重点、难点分析: 本节的重点是能正确画出直角坐标系,并能在直角坐标系中,根据坐标找出点,由点求出坐标 直角坐标系...

    发布于:2025-12-30

    详细阅读
  • 【函数】函数

    教学目标: 1、进一步理解的概念,能从简单的实际事例中,抽象出关系,列出解析式; 2、使学生分清常量与变量,并能确定自变量的取值范围 3、会求值,并体会自变量与值间的对应关系 4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的的自变量的取值范围的求法 5、通过的教学使学生体会...

    发布于:2025-12-30

    详细阅读
  • 【一元二次方程的应用】一元二次方程的应用

    第一课时 一、教学目标 1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。 2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。 3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。 二、重点·难点·疑点及解决办法 1.教学重点:会用列一元二次方...

    发布于:2025-12-30

    详细阅读
  • 过三点的圆的方程|过三点的圆

    第一课时 (一)学习活动设计: (二)学习载体设计: (1)实践:(a)过一点A是否可以作圆?如果能作,可以作几个? (b)过两个点A、B是否可以作圆?如果能作,可以作几个?……(发现新问题) (2)实验:应用电脑动画,使学生观察、发现新问题 (3)作图:已知:不在同一条直线上的三个已知点A、...

    发布于:2025-12-30

    详细阅读
  • 二次函数yax2bxc的图像和性质_二次函数y=ax2+bx+c 的图象

    教学目标: 1、使学生进一步理解二次函数的基本性质; 2、渗透解析几何,数形结合,函数等数学思想 培养学生发现问题解决问题,及逻辑思维的能力 3、使学生参与教学过程,通过主体的积极思维,体验感悟数学 逐步建立数学的观念,培养学生独立地获取知识的能力 教学重点:初步理解数形结合的数学思想 教学难点...

    发布于:2025-12-30

    详细阅读
  • 过三点的圆的方程|过三点的圆

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:①确定圆的定理 它是圆中的基础知识,是确定圆的理论依据;②不在同一直线上的三点作圆 “作圆”不仅体现在证明“确定圆的定理”的重要作用,也是解决实际问题中常用的方法;③反证法证明命题的一般步骤 反证法虽是选学内容,但它是证明数学命题的重要的基...

    发布于:2025-12-30

    详细阅读
  • 【一元二次方程的解法】一元二次方程的解法

    教学目标1. 初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如 的方程;2. 初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;3. 掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;4. 会用因式分解法解某些一元二次方程。5. 通过对一元二次...

    发布于:2025-12-30

    详细阅读
  • 两圆的公切线条数_两圆的公切线

    第一课时 (一) 教学目标: (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点: 两圆外公切线和两圆外公切线长学生理解的不透,容易...

    发布于:2025-12-30

    详细阅读
  • 与圆有关的比例线段_和圆有关的比例线段

    教学建议 1、教材分析 (1)知识结构 (2)重点、难点分析 重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明. 难点:正确地写出定理中的等积式.因为图形中的线段较多,...

    发布于:2025-12-30

    详细阅读
  • 一元二次方程的应用|一元二次方程的应用

    第一课时 一、教学目标 1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。 2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。 3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。 二、重点·难点·疑点及解决办法 1.教学重点:会用列一元二次...

    发布于:2025-12-30

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计