圆心角弧弦弦心距之间的关系思维导图|圆心角、弧、弦、弦心距之间的关系(一)

九年级数学教案 2016-02-25 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】

教学目标:1、本节课使学生理解圆的旋转不变性;2、掌握圆心角、弧、弦、弦心距之间关系定理,并能应用这些关系定理证明一些问题.3、通过本节课的教学进一步培养学生观察、比较、归纳、概括问题的能力.教学重点:圆心角、弧、弦、弦心距之间关系定理.教学难点: “圆心角、弧、弦、弦心距之间的关系定理”中的“在同圆或等圆”的前提条件的理解.教学过程:一、新课引入:同学们请观察老师手中的圆形图片.ab为⊙o的直径.①我把⊙o沿着ab折叠,两旁部分互相重合,我们知道这个圆是一个轴对移图形.②若把⊙o沿着圆心o旋转180°时;两旁部分互相重合,这时我们可以发现圆又是一个中心对称图形.由学生总结圆不仅是轴对称图形,圆也是中心对称图形.若一个圆沿着它的圆心旋转任意一个角度,都能够与原来图形互相重合,这就是我们本节课要讲的内容:圆的一条特殊性质,即圆的旋转不变性.从圆的旋转不变性出发,推出圆心角、弧、弦、弦心距之间的关系,这是本节课我们所要学习的圆的又一条性质.二、新课讲解:首先出示圆形图片,引导学生观察:

下面我们来学习圆心角、弧、弦、弦心距之间的关系.提问两名中下生回答弧、弦的概念.接着教师一边画图,一边引导学生观察,由学生总结出:圆心角定义:顶点在圆心的角叫圆心角.弦心距定义:从圆心到弦的距离叫做弦心距.教师通过图片(图7-21)演示,从学生观察中得到圆的旋转不变性,到圆心角、弦心距的两个概念,其目的是要求学生学会从观察、比较到归纳分析知识的能力,这样可以充分调动学生学习几何的积极性. 教师为了使学生真正了解图中圆心角、弧、弦、弦心距之间的内在联系,有意识找两位差一些的学生回答:“指出圆心角∠aob所对的弧是______,所对的弦是______,所对弦的弦心距是______.接下来我们来讨论:在⊙o中,如果圆心角∠aob=∠a′ob′,那么它们所对的 和 ,弦ab和a′b′、弦心距om和om′是否也相等呢?教师利用电脑演示,一边讲解,我们把∠aob连同ab沿着圆心o旋转,使射线oa与oa′重合.由圆的旋转不变性,射线ob与ob′重合.因为∠aob=∠a′ob’,oa=oa′,ob=ob′,∴点a与点a′重合,ab与a′b′重合,从点o到ab的垂线om和点o到a′b′的垂线om′也重合.即, = ,ab=a′b′,om=om′.于是由一名学生总结定理内容,教师板书:定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.教师进一步提出这样一个问题:这个命题不加“在同圆或等圆”这个前题条件是否是一个真命题呢?学生分小组讨论,由小组代表发表自己的意见.教师概括如下:这个定理的题设是:“在同圆或等圆中”、圆心角相等;结论是:“所对的弧相等”、“所对弦相等”、“所对弦的弦心距相等”.值得注意的是:在运用这个定理时,一定不能丢掉“在同圆或等圆中”这个前提.否则也不一定有所对的弧、弦、弦心距相等这样的结论.

教师为了培养学生的思维批判性,请一名同学画一个只能是圆心角相等的这个条件的图,虽然∠aob=∠a′ob′,但由于oa≠oa′,ob≠ob′.通过举出反例强论对定理的理解.这时教师分别把两个圆心角用①表示;两条弧用②表示;两条弦用③表示;两条弦的弦心距用④表示,我们就可以得出这样的结论.12

事实上,由于在“同圆或等圆中”这个前提下,将题设和结论中任何一项交换都是正确的.于是得到了这个定理的推论,为了巩固所学习的定理,黑板上出示例1:例1  如图7-23,点o是∠epf的平分线上的一点,以o为圆心的圆和角的两边分别交于点a、b和c、d.求证:ab=cd.这道题的证明思路,教师引导学生分析:要证明两弦ab=cd,根据本节课所学的定理及推论,只要能证出圆心角、弧、弦心距三个量之中的一个相等即可.由于已知po是∠epf的平分线,利用角平分线的性质可知点o到ab、cd的距离相等,即弦心距相等,于是可证明ab=cd.学生回答证明过程,教师板书:证明:作om⊥ab,on⊥cd,m,n为垂足.接着教师请同学们观察幻灯片,教师一边演示,一边讲解:如果将例1的∠epf的顶点p看成是沿着po这条直线运动,(1)当顶点在⊙o上时;(2)当顶点p在⊙o内部时,是否能得到例1的结论?请同学们课后思考完成.

课堂练习:教材p.88中1、2、3.三、课堂小结:本节课主要学习的内容是(1)圆的旋转不变性;(2)同圆或等圆中,圆心角、弧、弦、弦心距之间相等关系.本节课学习方法是(1)增加了证明角相等、弧相等的新方法;(2)利用本节课的定理可以证明弦、弦心距相等的方法.四、布置作业教材p.99中1(1)、2、3.12

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38312.html

  • 切线长定理_切线长定理

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点. 难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数...

    发布于:2025-12-29

    详细阅读
  • 一元二次方程根的判别式应用|一元二次方程的根的判别式(一)

    1 知识结构: 2 重点、难点分析 (1)本节的重点是会用判别式判定根的情况 一元二次方程的根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也可以利用它进一步学习函数的有关内容,所以,它是本节课的重点 (2)本节的难点是一元二次方程根的三种情况的推导...

    发布于:2025-12-29

    详细阅读
  • [垂直于弦的直径教案]垂直于弦的直径

    第一课时 垂直于弦的直径(一) 教学目标: (1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证实; (2)进一步培养学生观察问题、分析问题和解决问题的能力; (3)通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱 教学重点、难点:...

    发布于:2025-12-29

    详细阅读
  • 圆和圆的位置关系|圆和圆的位置关系

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:两圆的位置关系和两圆相交、相切的性质.它们是本节的主要内容,是圆的重要概念性知识,也是今后研究圆与圆问题的基础知识. 难点:两圆位置关系的判定与相交两圆的连心线垂直平分两圆的公共弦的性质的运用.由于两圆位置关系有5种类型,特别是相离有外离和...

    发布于:2025-12-29

    详细阅读
  • 相切约束的作图原理|相切在作图中的应用

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...

    发布于:2025-12-29

    详细阅读
  • 二次函数的图像和性质|一次函数的图象和性质

    教学目标 : 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化...

    发布于:2025-12-29

    详细阅读
  • 【一元二次方程的求根公式】一元二次方程

    教学目标 1. 了解整式方程和的概念;2. 知道的一般形式,会把化成一般形式。3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。教学重点和难点: 重点:的概念和它的一般形式。 难点:对的一般形式的正确理解及其各项系数的确定。教学建议...

    发布于:2025-12-29

    详细阅读
  • 反比例函数及其图象的教学设计_反比例函数及其图象

    教学设计示例1 教学目标 : 1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式; 2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质; 3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想; 4、体会数学从实践中来又到实际中去的研究、应用过程; 5、培养学生的观察能力...

    发布于:2025-12-29

    详细阅读
  • 二次函数的图像和性质_一次函数的图象和性质

    教学目标: 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化的...

    发布于:2025-12-29

    详细阅读
  • 一次函数|一次函数

    【目的要求】1、使学生初步理解与正比例函数的概念。2、使学生能够根据实际问题中的条件,确定与正比例函数的解析式。【教学重点、难点】以及正比例函数的解析式【教学过程 】一、复习提问: 1、什么是函数? 2、函数有哪几种表示方法?3、举出几个函数的例子。二、新课讲解:可以选用提问时学生举出的...

    发布于:2025-12-29

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计