【圆的内接四边形有什么性质】圆的内接四边形

九年级数学教案 2016-02-25 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】

1. 知识结构
    2. 重点、难点分析
    重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法.
    难点:定理的灵活运用.使用性质定理时应注重观察图形、分析图形,不要弄错四边形的
    外角和它的内对角的相互对应位置.
    3. 教法建议
    本节内容需要一个课时.
    (1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例),组织学生自主观察、分析和探究;
    (2)在教学中以“发现——证实——应用”为主线,以“非凡——一般”的探究方法,引导学生发现与证实的思想方法.
    一、教学目标:
    (一)知识目标
    (1)了解圆内接多边形和多边形外接圆的概念;
    (2)把握圆内接四边形的概念及其性质定理;
    (3)熟练运用圆内接四边形的性质进行计算和证实.
    (二)能力目标
    (1)通过圆的非凡内接四边形到圆的一般内接四边形的性质的探究,培养学生观察、分析、概括的能力;
    (2)通过定理的证实探讨过程,促进学生的发散思维;
    (3)通过定理的应用,进一步提高学生的应用能力和思维能力.
    (三)情感目标
    (1)充分发挥学生的主体作用,激发学生的探究的热情;
    (2)渗透教学内容中普遍存在的相互联系、相互转化的观点.
    二、教学重点和难点:
    重点:圆内接四边形的性质定理.
    难点:定理的灵活运用.
    三、教学过程设计
    (一)基本概念
    假如一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.如图中的四边形abcd叫做⊙o的内接四边形,而⊙o叫做四边形abcd的外接圆.
    (二)创设研究情境
    问题:一般的圆内接四边形具有什么性质?
    研究:圆的非凡内接四边形(矩形、正方形、等腰梯形)
    教师组织、引导学生研究.
    1、边的性质:
    (1)矩形:对边相等,对边平行.
    (2)正方形:对边相等,对边平行,邻边相等.
    (3)等腰梯形:两腰相等,有一组对边平行.
    归纳:圆内接四边形的边之间看不出存在什么公同的性质.
    2、角的关系
    猜想:圆内接四边形的对角互补.
    (三)证实猜想
    教师引导学生证实.(参看思路)
    思路1:在矩形中,外接圆心即为它的对角线的中点,∠a与∠b均为平角∠bod的一半,在一般的圆内接四边形中,只要把圆心o与一组对顶点b、d分别相连,能得到什么结果呢?
    ∠a= ,∠c=
    ∴∠a ∠c=
    思路2:在正方形中,外接圆心即为它的对角线的交点.把圆心与各顶点相连,与各边所成的角均方45°的角.在一般的圆内接四边形中,把圆心与各顶点相连,能得到什么结果呢? 12
    这时有2(α β γ δ)=360°
    所以 α β γ δ=180°
    而 β γ=∠a,α δ=∠c,
    ∴∠a ∠c=180°,可得,圆内接四边形的对角互补.
    (四)性质及应用
    定理:圆的内接四边形的对角互补,并且任意一个外角等于它的内对角.
    (对a层学生应知,逆定理成立, 4点共圆)
    例 已知:如图,⊙o1与⊙o2相交于a、b两点,经过a的直线与⊙o1交于点c,与⊙o2交于点d.过b的直线与⊙o1交于点e,与⊙o2交于点f.
    求证:ce∥df.
    (分析与证实学生自主完成)
    说明:①连结ab这是一种常见的引辅助线的方法.对于这道例题,连结ab以后,可以构造出两个圆内接四边形,然后利用圆内接四边形的关于角的性质解决.
    ②教师在课堂教学中,善于调动学生对例题、重点习题的剖析,多进行一点一题多变,一题多解的练习,培养学生发散思维,勇于创新.
    巩固练习:教材p98中1、2.
    (五)小结
    知识:圆内接多边形——圆内接四边形——圆内接四边形的性质.
    思想方法:①“非凡——一般”研究问题的方法;②构造圆内接四边形;③一题多解,一题多变.
    (六)作业:教材p101中15、16、17题;教材p102中b组5题.
    探究活动
    问题: 已知,点a在⊙o上,⊙a与⊙o相交于b、c两点,点d是⊙a上(不与b、c重合)一点,直线bd与⊙o相交于点e.试问:当点d在⊙a上运动时,能否判定△ced的外形?说明理由.
    分析 要判定△ced的外形,当运动到bd经过⊙a的圆心a时,此时点e与点a重合,可以发现△ced是等腰三角形,从而猜想对一般情况是否也能成立,进一步观察可发现在运动过程中∠d及∠ced的大小保持不变,△ced的外形保持不变.
    提示:分两种情况
    (1)当点d在⊙o外时.证实△cde∽△cad’即可
    (2)当点d在⊙o内时. 利用圆内接四边形外角等于内对角可证实△cde∽△cad’即可
    说明:(1)本题应用同弧所对的圆周角相等,及圆内接四边形外角等于内对角,改变圆周角顶点位置,进行角的转换;
    (2)本题为图形外形判定型的探索题,结论的探索同样运用图形运动思想,证实结论将一般位置转化成非凡位置,同时获得添辅助线的方法,这也是添辅助线的常用的思想方法;
    (3)一般地,有时对几种不同位置图形探索得到相同结论,但不同位置的证实方法不同时,也要进行分类讨论.本题中,假如将直线bd运动到使点e在bd的反向延长线上时,
    △cde仍然是等腰三角形.12

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38309.html

  • 正弦和余弦_正弦和余弦

    教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三...

    发布于:2025-12-31

    详细阅读
  • [圆的内接四边形有什么性质]圆的内接四边形

    1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...

    发布于:2025-12-31

    详细阅读
  • 【扇形所含弓形的面积】圆、扇形、弓形的面积

    (一) 教学目标 : 1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算; 2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力; 3、在扇形面积公式的推导和例题教学过程 中,渗透“从特殊到一般,再由一般到特殊”的辩证思想. 教学重点:扇形面积公式的导出及应用....

    发布于:2025-12-31

    详细阅读
  • 方差公式|方差

    教学设计示例1第一课时 素质教育目标 (一)知识教学点 使学生了解、标准差的意义,会计算一组数据的与标准差 (二)能力训练点 1.培养学生的计算能力 2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力 (三)德育渗透点 1.培养学生认真、耐心、细致的学习态度和学习习惯 2.渗透数学...

    发布于:2025-12-31

    详细阅读
  • 两圆的公切线条数|两圆的公切线

    第一课时 (一) 教学目标 : (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点 : 两圆外公切线和两圆外公切线长学生理解的不透,...

    发布于:2025-12-31

    详细阅读
  • 二次函数y=ax2的图象和性质|二次函数y=ax2的图象

    教学设计示例1 课题:二次函数 的图象 教学目标: 1、会用描点法画出二次函数 的图象; 2、根据图象观察、分析出二次函数 的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由特殊到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探...

    发布于:2025-12-31

    详细阅读
  • [圆的内接四边形有什么性质]圆的内接四边形

    1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...

    发布于:2025-12-31

    详细阅读
  • [相切约束的作图原理]相切在作图中的应用

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...

    发布于:2025-12-31

    详细阅读
  • 【圆周角定理】圆周角

    第一课时 (一) 教学目标 : (1)理解的概念,掌握的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:的概念和定理 教学难点 :定理的证明中由“一般到特殊”的数学思想方法和完全归纳...

    发布于:2025-12-31

    详细阅读
  • 可化为一元二次方程的分式方程的解法_可化为一元二次方程的分式方程

    一、教学目标 1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根 2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点 二、重点·难点·疑点及解决办法 1.教学重点:的解法. 2.教学难点...

    发布于:2025-12-31

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计