[扇形所含弓形的面积]圆、扇形、弓形的面积(三)
【jiaoan.jxxyjl.com--九年级数学教案】
教学目标:
1、简单组合图形的分解;
3、通过简单组合图形的分解,培养学生的观察能力、发散思维能力和综合运用知识分析问题、解决问题的能力.
4、通过对s△与s扇形关系的探讨,进一步研究正多边形与圆的关系,培养学生抽象思维能力和归纳概括能力.
教学重点:
简单组合图形的分解.
教学难点:
正确分解简单的组合图形.
教学过程:
一、新课引入:
上节课学习了弓形面积的计算,并且从中获得了简单组合图形面积的计算可转化为规则图形的和与差来解决的方法.今天我们继续学习“7.20圆、扇形、弓形的面积(三)”,巩固化简单组合图形为规则图形和与差的方法.
学生在学习弓形面积计算的基础上,获得了通过分解简单组合图形,计算其面积的方法.但要正确分解图形,还需一定题量的练习,所以本堂课为学生提供练习题让学生们互相切磋、探讨.通过正多边形的有关计算的复习进一步理解正多边形与圆的关系,随着正多边形边数增加,周长越来越趋向于圆的周长,面积越来越趋向于圆的面积,使学生初步体会极限的思想,了解s△与s扇形之间的关系.
二、新课讲解:
(复习提问):1.圆面积公式是什么?2.扇形面积公式是什么?如何选择公式?3.当弓形的弧是半圆时,其面积等于什么?4.当弓形的弧是劣弧时,其面积怎样求?5.当弓形的弧是优弧时,其面积怎样求?(以上各题均安排中下生回答.)
(幻灯显示题目):如图7-168,已知⊙o上任意一点c为圆心,以r
从题目中可知⊙o的半径为r,“以⊙o上任意一点c为圆心,以r为半径作弧与⊙o相交于a、b.”为我们提供的数学信息是什么?(安排中上生回答:a、b到o、c的距离相等,都等于oc等于r.)
转化为弓形面积求呢?若能,辅助线应怎样引?(安排中等生回答:能,连结ab.)
大家观察图形不难发现我们所求图形实质是两个弓形的组合,即
倍?(安排中下生回答:因已知oa=oc=ac所以△oac是等边三角
同学们讨论研究一下,s△aob又该如何求呢?(安排中上等生回答:求s△aob,需知ab的长和高的长,所以设oc与ab交点为d.∵∠aoc=60°,oa=r∴解rt△aod就能求出ab与高od.)连结oc交ab于d怎么就知od⊥ab?(安排中等生回答:根据垂径定理∵c是ab中点.)
同学们互相研究看,此题还有什么方法?
下面给出另外两种方法,供参考:
幻灯展示题目:正方形的边长为a,以各边为直径,在正方形内画半圆,求所围成的图形(阴影部分)的面积.
请同学们仔细观察图形,思考如何分解这个组合图形.同学间互相讨论、研究、交流看法:
现将学生可能提出的几种方案列出,供参考:
方案1.s阴=s正方形-4s空白.观察图形不难看出sⅱ+sⅳ=s正方形-
方案2.观察图形,由于正方形abcd∴∠aob=90°,由正方形的轴对称性可知阴影部分被分成八部分.观察发现半圆aob的面积-△
即可.即s阴=4s瓣而s瓣=s半⊙-s△aob∴s阴=4.(s半⊙-s△aob)=2s⊙-4s△aob=2s⊙-s正方形.
方案4.观察扇形eao,一瓣等于2个弓形,一个s弓形=s扇oa-
方案5.观察rt△abc部分.用半圆boc与半圆aob去盖rt△abc,发现这两个半圆的和比rt△abc大,大出一个花瓣和两个弓形,而这两个弓形的和就又是一个瓣.因此有2个s瓣=2个s半圆-srt△abc=
方案6.用四个半圆盖正方形,发现其和比正方形大,大的部分恰是s即:12
在学生们充分讨论交流之后,要求学生仔细回味展示出来的不同解法.尤其要琢磨这些解法是怎样观察、思考的.
幻灯展示练习题:1.如图7-176,已知正△abc的半径为r,则它的外接圆周长是____;内切圆周长是____;它的外接圆面积是____;
2.如图7-177,已知正方形abcd的半径r,则它的外接圆周长是____;内切圆周长是____;它的外接圆面积是____;它的内切圆面积
3.如图7-178,已知正六边形abcdef的半径r,则它的外接圆的周长是____;内切圆周长是____;它的外接圆
将上面三片复合到一起.如图7-179,让学生观察,随着正多边形边数的增加,周长和面积有什么变化?(安排中等学生回答:随着正多边形边数的增加,周长越来越接近圆的周长,面积越来越接近圆的面积.)正因为如此,所以古代人用增加正多边形边数的方法研究圆周率π,研究圆的周长与圆的面积的计算.
大家再观察,随着正多边形边数的增加,边长越来越接近于弧,再看正多边形的边心距越来越接近于圆的半径,所以以边长为底,边心距
三、课堂小结:
安排学生归纳所学知识内容:1.简单组合图形的分解;2.复习了正多边形的计算以及以此为例,复习了圆周长、弧长、圆面积、扇形面积、弓形面积的计算.进一步理解了正多边形和圆的关系定理.
四、布置作业
教材p185.练习1、2、3;p.187中8、11.12本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38305.html
-
切线长定理_切线长定理详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点. 难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数...
-
一元二次方程根的判别式应用|一元二次方程的根的判别式(一)详细阅读
1 知识结构: 2 重点、难点分析 (1)本节的重点是会用判别式判定根的情况 一元二次方程的根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也可以利用它进一步学习函数的有关内容,所以,它是本节课的重点 (2)本节的难点是一元二次方程根的三种情况的推导...
-
[垂直于弦的直径教案]垂直于弦的直径详细阅读
第一课时 垂直于弦的直径(一) 教学目标: (1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证实; (2)进一步培养学生观察问题、分析问题和解决问题的能力; (3)通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱 教学重点、难点:...
-
圆和圆的位置关系|圆和圆的位置关系详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:两圆的位置关系和两圆相交、相切的性质.它们是本节的主要内容,是圆的重要概念性知识,也是今后研究圆与圆问题的基础知识. 难点:两圆位置关系的判定与相交两圆的连心线垂直平分两圆的公共弦的性质的运用.由于两圆位置关系有5种类型,特别是相离有外离和...
-
相切约束的作图原理|相切在作图中的应用详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...
-
二次函数的图像和性质|一次函数的图象和性质详细阅读
教学目标 : 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化...
-
【一元二次方程的求根公式】一元二次方程详细阅读
教学目标 1. 了解整式方程和的概念;2. 知道的一般形式,会把化成一般形式。3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。教学重点和难点: 重点:的概念和它的一般形式。 难点:对的一般形式的正确理解及其各项系数的确定。教学建议...
-
反比例函数及其图象的教学设计_反比例函数及其图象详细阅读
教学设计示例1 教学目标 : 1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式; 2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质; 3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想; 4、体会数学从实践中来又到实际中去的研究、应用过程; 5、培养学生的观察能力...
-
二次函数的图像和性质_一次函数的图象和性质详细阅读
教学目标: 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化的...
-
一次函数|一次函数详细阅读
【目的要求】1、使学生初步理解与正比例函数的概念。2、使学生能够根据实际问题中的条件,确定与正比例函数的解析式。【教学重点、难点】以及正比例函数的解析式【教学过程 】一、复习提问: 1、什么是函数? 2、函数有哪几种表示方法?3、举出几个函数的例子。二、新课讲解:可以选用提问时学生举出的...