集合与简易逻辑的小结_第一章集合与简易逻辑小结
【jiaoan.jxxyjl.com--高一数学教案】
教学目的:⒈ 理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;掌握带绝对值的不等式与一元二次不等式的解法.⒉理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;进一步了解反证法,会用反证法证明简单的问题;掌握充要条件的意义.教学重点:1.有关集合的基本概念;2.逻辑联结词“或”、“且”、“非”与充要条件 教学难点: 1.有关集合的各个概念的含义以及这些概念相互之间的区别与联系;2. 对一些代数命题真假的判断. 授课类型:复习授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析:这一章主要讲述集合的初步知识与简易逻辑知识两部分内容.集合部分主要包括集合的有关概念、集合的表示及集合同集合之间的关系.简易逻辑知识部分主要介绍逻辑联结词“或”、“且”、“非”、四种命题及其相互关系、充要条件等有关知识.教学过程:一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分: 【知识点与学习目标】:【高考评析】集合知识作为整个数学知识的基础,在高考中重点考察的是集合的化简,以及利用集合与简易逻辑的知识来指导我们思维,寻求解决其他问题的方法.【学法指导】本章的基本概念较多,要力求在理解的基础上进行记忆.【数学思想】1、等价转化的数学思想; 2、求补集的思想; 3、分类思想; 4、数形结合思想.【解题规律】1、如何解决与集合的运算有关的问题:1)对所给的集合进行尽可能的化简; 2)有意识应用维恩图来寻找各集合之间的关系; 3)有意识运用数轴或其它方法来直观显示各集合的元素.2. 如何解决与简易逻辑有关的问题:1) 力求寻找构成此复合命题的简单命题; 2) 利用子集与推出关系的联系将问题转化为集合问题 二、基本知识点:集合:1、集合中的元素属性:(1) (2) (3) 2、常用数集符号:n z q r 3、子集: 数学表达式 4、补集: 数学表达式 1235、交集: 数学表达式 6、并集: 数学表达式 7、空集: 它的性质(1) (2) 8、如果一个集合a有n个元素(crada=n),那么它有个 个子集, 个非空真子集 注意:(1)元素与集合间的关系用 符号表示;(2)集合与集合间的关系用 符号表示 解不等式:1、绝对值不等式的解法:(1)公式法:|f(x)|>g(x) |f(x)|<g(x) (2)几何法 (3)定义法(利用定义打开绝对值) (4)两边平方2、一元二次不等式 或 的求解原理:利用二次函数的图象通过二次函数与二次不等式的联系从而推证出任何一元二次不等式的解集 对应的图形不等式△>0△=0△<03、分式、高次不等式的解法: 4、一元二次方程实根分布:简易逻辑: 1、命题的定义:可以判断真假的语句叫做命题 2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题 构成复合命题的形式:p或q(记作“p∨q” );p且q(记作“p∧q” );非p(记作“┑q” ) 3、“或”、 “且”、 “非”的真值判断(1)“非p”形式复合命题的真假与p的真假相反;(2)“p且q”形式复合命题当p与q同为真时为真,其他情况时为假;(3)“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.4、四种命题的形式:原命题:若p则q; 逆命题:若q则p;否命题:若┑p则┑q;逆否命题:若┑q则┑p (1)交换原命题的条件和结论,所得的命题是逆命题; (2)同时否定原命题的条件和结论,所得的命题是否命题; (3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.5、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系:(原命题 逆否命题)①、原命题为真,它的逆命题不一定为真 ②、原命题为真,它的否命题不一定为真 123③、原命题为真,它的逆否命题一定为真 6、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法 7、如果已知p q那么我们说,p是q的充分条件,q是p的必要条件 判断两条件间的关系技巧:(1) (2) 注意:(1)复合命题的三种形式与假言命题中的四种命题的区别 (2)复合命题中的“p或q”与假言命题中的“若p则q”它们的“p”的区别 三、巩固训练(一)、选择题:1、下列关系式中不正确的是( )a 0 b 0 c 0 d 0 2、下列语句为命题是( )a 等腰三角形 b对顶角相等 c ≥0 d0是自然数吗?3、命题“方程|x|=1的解是x=±1”中,使用逻辑联结词的情况是( )a 使用了逻辑联结词“或” b 使用了逻辑联结词“且”c 使用了逻辑联结词“非” d 没有使用逻辑联结词4、不等式 的解集为( )a b c d 5、 不全为0的充要条件是( )a 都不是0 b 最多有一个是0c 只有一个是0 d 中至少有一个不是06、 ≥ ( )a充分而不必要条件 b必要而不充分条件 c充分必要条件 d即不充分也不必要条件7、如果命题 则 a即不充分也不必要条件 b必要而不充分条件 c充分而不必要条件 d充要条件 8、 至少有一个负的实根的充要条件是( )a b c d (二)、填空题:9、不等式 的解集是 则 = = 10、分式不等式 的解集为:_______________.11、命题“ ”的逆命题、否命题、逆否命题中,真命题有____个.12、设a= ,b= ,若a b ,则 的取值范围是________.(三)、解答题:13、解下列不等式 ① ② ③| <| ④ ( )14、利用反证法证明: 15、已知一元二次不等式 对一切实数 都成立,求 的取值范围 16、已知集合a= ,求实数 的取值范围( 表示正实数集合) 123
-
【充分条件与必要条件】充分条件与必要条件详细阅读
教学目标 (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学建议(一)教材分析1.知识结构 首先给出推断符号“ ”,并引出的意义,在此基础上讲述了充...
-
函数奇偶性知识点归纳|函数单调性与奇偶性详细阅读
教学目标 1 了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法 (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念 (2)能从数和形两个角度认识单调性和奇偶性 (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶...
-
[数列]数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一...
-
一元二次不等式的解法_一元二次不等式的解法详细阅读
教学目标 (1)掌握; (2)知道一元二次不等式可以转化为一元一次不等式组; (3)了解简单的分式不等式的解法; (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系; (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式; (6)通过利...
-
等比数列的前n项和公式_等比数列的前n项和详细阅读
教学目标 1 掌握等比数列前 项和公式,并能运用公式解决简单的问题 (1)理解公式的推导过程,体会转化的思想; (2)用方程的思想认识等比数列前 项和公式,利用公式知三求一;与通项公式结合知三求二; 2 通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想 3 通过公式推导...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已...
-
【数列】数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一个的前...
-
等差数列求和公式_等差数列详细阅读
教学目标 1 理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题 (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念; (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项; (3)能通过通项公式与图像认识的性质,能用...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及...
-
[交集]交集、并集详细阅读
教学目标 : (1)理解交集与并集的概念; (2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的的求法; (5)通过对概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程; (6)通过对集...