【3.1.1方程的根与函数的零点教案三课时】3.1.1方程的根与函数的零点教案
【jiaoan.jxxyjl.com--高一数学教案】
§3.1.1 方程的根与函数的零点教学目的:1、结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的关系;2、根据具体函数的图象,能够借助计算器或计算机用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。教学重点:函数的零点的概念及求法;能够借助计算器或计算机用二分法求相应方程的近似解。教学难点:利用函数的零点作简图;对二分法的理解。课时安排:3课时 教学过程:一、 引入课题
1、思考:一元二次方程ax2+bx+c=0(a≠0)的根与二次函数y=ax2+bx+c (a≠0)的图象有什么关系?
2、指出:(1)方程x2-2x-3=0的根与函数y= x2-2x-3的图象之间的关系;(2)方程x2-2x+1=0的根与函数y= x2-2x+1的图象之间的关系;(3)方程x2-2x+3=0的根与函数y= x2-2x+3的图象之间的关系.二、新课教解
1、一元二次方程ax2+bx+c=0(a≠0)的根与二次函数y= ax2+bx+c (a≠0)的图象有如下关系:
判别式△=b2-4ac
△>0
△=0
△<0
二次函y=ax2+bx+c 的图象 xyx1x2xyx1=x2yx
与x轴有两个交点(x1,0),(x2,0)
与x轴有唯一的交点(x1,0)
与x轴没有交点
一元一次方程ax2+bx+c=0 的根
有两个不等的实数根x1,x2 x1<x2
有两个相等实数根x1=x2
没有实数根
2、函数零点的概念
对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点(zero point).
方程f(x)=0有实数根 函数y=f(x)的图象与x轴 有交点 函数y=f(x)有零点
3、连续函数在某个区间上存在零点的判别方法:
如果函数y=f(x)在区间[a,b]上的图象是连续不断一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点.即存在c∈(a,b),使得f(c )=0,这个c也就是方程f(x)=0的根.
例1 求函数f(x)=lnx+2x-6的零点个数.练习:p103 第1、2题.
思考:怎样求解方程lnx+2x-6=0?
4、二分法
对于在区间[a,b]上连续不断、且f(a) · f(b)<0的函数y=f(x),通过不断把函数f(x)的零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法。
步骤:1、确定区间[a,b],验证f(a) · f(b)<0,给定精确度ε
2、求区间(a,b)的中点x1
3、计算f(x1);
(1) 若f(x1)=0,则x1就是函数的零点
(2) 若f(a) · f(x1)<0,则令b= x1(此时零点x0∈(a,x1))
(3) 若f(b)· f(x1)<0,则令a= x1(此时零点x0∈(x1,b))
4、判断是否达到精确度ε,即若|a-b|< ε,则得到零点的近似值a(或b);否则得复2~4。
例2、借助电子计算器或计算机用二分法求方程 的近似解(精确到0.1)。12练习:p106 第1、2题.三、归纳小结,强化思想 本节主要学习了函数的零点的概念及求法;借助计算器或计算机用二分法求相应方程的近似解。四、作业布置1. 必做题:教材p108习题3.1(a组) 第1-6题.2. 选做题:教材p109习题3.1(b组) 第2题12
-
【充分条件与必要条件】充分条件与必要条件详细阅读
教学目标 (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学建议(一)教材分析1.知识结构 首先给出推断符号“ ”,并引出的意义,在此基础上讲述了充...
-
函数奇偶性知识点归纳|函数单调性与奇偶性详细阅读
教学目标 1 了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法 (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念 (2)能从数和形两个角度认识单调性和奇偶性 (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶...
-
[数列]数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一...
-
一元二次不等式的解法_一元二次不等式的解法详细阅读
教学目标 (1)掌握; (2)知道一元二次不等式可以转化为一元一次不等式组; (3)了解简单的分式不等式的解法; (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系; (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式; (6)通过利...
-
等比数列的前n项和公式_等比数列的前n项和详细阅读
教学目标 1 掌握等比数列前 项和公式,并能运用公式解决简单的问题 (1)理解公式的推导过程,体会转化的思想; (2)用方程的思想认识等比数列前 项和公式,利用公式知三求一;与通项公式结合知三求二; 2 通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想 3 通过公式推导...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已...
-
【数列】数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一个的前...
-
等差数列求和公式_等差数列详细阅读
教学目标 1 理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题 (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念; (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项; (3)能通过通项公式与图像认识的性质,能用...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及...
-
[交集]交集、并集详细阅读
教学目标 : (1)理解交集与并集的概念; (2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的的求法; (5)通过对概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程; (6)通过对集...