集合_集合

高二数学教案 2014-06-02 网络整理 晴天

【jiaoan.jxxyjl.com--高二数学教案】


1.理解的概念;2.掌握的两种表示方法;3.会正确使用符号这三个学习目标即可 1.点、线、面等概念都是几何中原始的、不加定义的概念,则是论中原始的、不加定义的概念.一般地,某些指定的对象集在一起就成为一个,也简称集.一般用大括号表示,例如“汽车,飞机,轮船”等交通运输工具组成的可以写成{汽车、飞机、轮船}为了方便.我们还通常用大写的拉丁字母A、B、C……表示,例如A={a,b,c}.2.中的元素中的每个对象叫做这个的元素.例如“中国的直辖市”这一的元素是:北京、上海、天津、重庆.中的元素常用小写的拉丁字母a,b,c,…表示.如果a是A的元素,就说a属于A,记作a∈A;如果a不是A的元素,就说a不属于A,记作a A.3.中元素的特性(1)确定性  对于A和某一对象x,有一个明确的判断标准是x∈A,还是x A,二者必成其一,不会模棱两可.例如,“著名的数学家”,“漂亮的人”这类对象,一般不能构成数学意义上的,因为找不到用以判别每一具体对象是否属于的明确标准.(2)互异性.对于一个给定的,它的任何两个元素都是不同的;因此,中的相同元素只能算作一个,如方程x2-2x+1=0的两个等根,x1=x2=1,用记为{1},而不写为{1,1},如果把{1,2,3},{2,3,4}的元素合并起来构成一个新,那么新只有1,2,3,4这四个元素.(3)无序性  中的元素是不排序的,如{1,2}与{2,1}是同一个,但实际上在书写时还是按一定顺序书写的,如{-1,0,1,2}而不写成{0,1,-1,2},这样写不方便,其更深刻的含义是揭示了元素的“平等地位”.4.表示法(1)列举法  将中的所有元素一一列举出来,写在大括号内.(2)描述法  用描述表示的,对其元素的属性要准确理解.例如,{y|y=x2}表示函数y值的全体,即{y|y≥0};{x|y=x2}表示自变量x的值的全体,即{x|x为任一实数};{x,y|y=x2}表示抛物线y=x2上的点的全体,是点集(一条抛物线);而{y=x2}则是用列举法表示的单元素集,也就是只有一个元素(方程y=x2)的有限集.(3)图示法  为了形象地表示,我们常常画一条封闭曲线,用它的内部来表示一个,例如,如图可表示{1,2,3,4}5.特定表示法自然数集(或非负整数集),记作N,自然数集内排除0的集,也称正整数集,记作N*或N+(注意,自然数集包括0);整数集,记作Z;有理数集,记作Q;实数集,记作R;Z,Q,R等数集内排除0的集,分别表示为Z*(或Z+),Q*(或Q+),R*(或R+).6.的分类①有限集:含有限个元素的叫做有限集.例如:A={1,2,3,4}②无限集:含有无限多个元素的叫做无限集.例如:N+③空集:不含任何元素的称为空集.例如:方程x2+2x+3=0在实数范围内的解集. 例1  下列各组对象能否构成一个?指出其中的是无限集还是有限集?并用适当的方法表示出来.(1)直角坐标平面内横坐标与纵坐标互为相反数的点;(2)高一数学课本中所有的难题;(3)方程x4+x2+2=0的实数根;(4)图甲中阴影部分的点(含边界上的点).图甲                        图乙  解:(1)是无限.其中元素是点,这些点要满足横坐标和纵坐标互为相反数.可用两种方法表示这个:描述法:{(x,y)|y=x|};图示法:如图乙中直线l上的点.(2)不是.难题的概念是模糊的不确定的,实际上一道数学题是“难者不会,会者不难”.因而这些难题不能构成.(3)是空集.其中元素是实数,这些实数应是方程x4+x2+2=0的根,这个方程没有实数根,它的解集是空集.可用描述法表示为:或者{x∈R|x4+x2+2=0}.(4)是无限.其中元素是点,这些点必须落在图甲的阴影部分(包括边界上的点).图甲本身也可看成图示法表示,我们还可用描述表示这个;{(x,y)|-1≤x≤2,- ≤y≤2,且xy≤0}例2  下面六种表示法:(1){x=-1,y=2},(2){(x,y)|x=-1,y=2},(3){-1,2},(4)(-1,2),(5){(-1,2)},(6){(x,y)|x=-1或y=2},能正确表示方程组 的解集的是:A. (1)(2)(3)(4)(5)(6)               B.(1)(2)(4)(5)C.(2)(5)                            D.(2)(5)(6)分析  由于此方程组的解是 因而写成时,应表示成一对有序实数(-1,2).解:因为{(x,y)| ={(x,y)| ={(-1,2)}故选C.评析  (1)既非列举法,又非描述法.(3)表示由-1和2两个数组成的.(4)是一个点.(6)中的元素是(-1,y)或(x,2),x,y∈R是一个无限集.以上均不合题意.例3  用符号∈或 填空.(1)3.14       Q,0       N,         Z,(-1)0        N,0       (2)2       {x|x< =,3        {x|x>4}, +       {x|x≤2+ };(3)3        {x|x=n2+1,n∈N},5       {x|x=n2+1,n∈N};(4)(-1,1)       {y|y=x2},(-1,1)      {(x,y)|y=x2}解:(1)∈、∈、 、∈、 (空集不含任何元素);(2)2 = > ,3 = > =4,+ = = < = =2+ ,故填 、∈、∈;(3)令n2+1=3,n=±   n N.令n2+1=5,  n=±2,2∈N,故填 、∈;(4) ,∈.(因为{y|y=x2}中元素是数而(-1,1)代表一个点)例4   用另一种形式表示下列(1){绝对值不大于3的整数}(2){所有被3整除的数}(3){x|x=|x|,x∈Z且x<5}(4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}(5){(x,y)}|x+y=6,x∈N+,y∈N+}解:(1)绝对值不大于3的整数}还可以表示为{x||x|≤3,x∈Z},也可表示为{-3,-2,-1,0,1,,2,3};(2){x|x=3n,n∈Z};(说明:{被3除余1的整数}可表示为{x|x=3n+1,n∈Z});(3)∵x=|x|,∴x≥0,又∵x∈Z且x<5,∴{x|x=|x|,x∈Z且x<5}还可以表示为{0,1,2,3,4}(4){-2}(注意x∈Z})(5){(1,5),(2,4),(3,3),(4,2),(5,1)}例5。用另一种形式表示下面的:{x|(2x-1)(x+2)(x2+1)=0,x∈Z}.错误解答  的元素x是由方程(2x-1)(x+2)(x2+1)=0的根组成的,解方程,得x= ,x=-2,x= ∴  原可以表示为{ ,-2, }错误存在于解方程的过程和最后的表示当中,解方程时应注意到x2+1≠0,x∈R,所以,方程的根为x= ,x=-2.注意到已知条件x∈z R,才不致造成错误.因为 Z  所以,正确答案应为{-2}或写作{x|x=-2}.例6  已知A={x|x=a+b ,a,b∈Z},分析判断下列元素x与A之间的关系:(1)x=0,(2)x= ,(3)x= .分析  x与A的关系只有x∈A和x A两种.判断x是不是A中的元素,即观察x能否写成a+b (a,b∈Z)的形式.解:(1)因为0=0+0× ,所以0∈A.(2)因为x= = - ,无论a、b为何整数,a+b = - 不能成立,所以x= A.(3)因为x= = =1+2 ,所以 ∈A.评析  研究元素与的关系,一要注意的表示方法(列举法或描述法),二要准确判断元素的属性.例7  已知A={p|x2+2(p-1)x+1=0,x∈R},求一次函数y=2x-1,x∈A的取值范围.分析  关键是理解A中元素的属性.p的取值范围必须满足关于x的一元二次方程x2+2(p-1)x+1=0有实数根.解:由已知,Δ=4(p-1)2-4≥0.得p≥2或p≤0.所以A={p|p≥2或p≤0}.因为x∈A,所以x≥2或x≤0,所以2x-1≥3或2x-1≤-1,所以y的取值范围是{y|y≤-1或y≥3}.

本文来源:https://jiaoan.jxxyjl.com/gaoershuxuejiaoan/19340.html

  • 算术平均数和几何平均数的不等式_算术平均数与几何平均数(一)

    教学目标 (1)掌握“两个正数的算术平均数不小于它们的几何平均数”这一重要定理; (2)能运用定理证明不等式及求一些函数的最值; (3)能够解决一些简单的实际问题; (4)通过对不等式的结构的分析及特征的把握掌握重要不等式的联系; (5)通过对重要不等式的证明和等号成立的条件的分析,培养学生严谨科...

    发布于:2025-11-23

    详细阅读
  • 算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)

    第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...

    发布于:2025-11-23

    详细阅读
  • 曲线和方程_曲线和方程

    教学目标 (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题. (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念. (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点. (4)通过求曲线方程的教学,培养学生的转...

    发布于:2025-11-23

    详细阅读
  • 不等式的性质二是什么|不等式的性质(二)

    第二课时教学目标 1.理解同向不等式,异向不等式概念; 2.掌握并会证明定理1,2,3; 3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据; 4.初步理解证明不等式的逻辑推理方法 教学重点:定理1,2,3的证明的证明思路和推导过程教学难点 :理解证明不等式的逻辑推理方法教学...

    发布于:2025-11-23

    详细阅读
  • [直线的倾斜角和斜率教案]直线的倾斜角和斜率

    教学目标 (1)了解直线方程的概念. (2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率. (3)理解公式的推导过程,掌握过两点的直线的斜率公式. (4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交...

    发布于:2025-11-22

    详细阅读
  • 算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)

    第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...

    发布于:2025-11-22

    详细阅读
  • [简单的线性规划教案]简单的线性规划(二)

    线性规划教学设计方案(二)教学目标 巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.重点难点 理解二元一次不等式表示平面区域是教学重点. 如何扰实际问题转化为线性规划问题,并给出解答是教学难点.教学步骤【新课引入】 我们知道,二元一次不等式和二元一次不等式组都表示平面...

    发布于:2025-11-22

    详细阅读
  • [二阶琴生不等式的证明]不等式的证明(二)

    第二课时教学目标 1.进一步熟练掌握比较法证明不等式; 2.了解作商比较法证明不等式; 3.提高学生解题时应变能力 教学重点 比较法的应用教学难点 常见解题技巧教学方法 启发引导式教学活动 (一)导入 新课 (教师活动)教师打出字幕(复习提问),请三位同学回答问题,教师点评. (学生活动...

    发布于:2025-11-22

    详细阅读
  • 【简单的线性规划一】简单的线性规划(一)

    教学目标 (1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域; (2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念; (3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题; (4)培养学生观察、联想以...

    发布于:2025-11-22

    详细阅读
  • 一元函数不等式的证明|不等式的证明(一)

    教学目标 (1)理解证明不等式的三种方法:比较法、综合法和分析法的意义; (2)掌握用比较法、综合法和分析法来证简单的不等式; (3)能灵活根据题目选择适当地证明方法来证不等式; (4)能用不等式证明的方法解决一些实际问题,培养学生分析问题、解决问题的能力; (6)通过不等式证明,培养学生逻辑推理...

    发布于:2025-11-22

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计