【一个数乘以小数积一定比这个数小】一个数乘以小数
【jiaoan.jxxyjl.com--高二数学教案】
教学目标
(一)理解的意义,掌握的计算方法。
(二)掌握转化的数学思想,提高抽象概括的能力。
教学重点和难点
重点:掌握的意义和计算方法。
难点:理解的算理。
教学过程 设计
(一)复习准备
1.说一说。
(1)0.4表示什么?(2)1.2表示什么?
(3)0.85表示什么?(4)1.06表示什么?
2.口算:
3×2=30×20=30×200=3000×2000=
观察上面的算式,从上往下看,被乘数和乘数发生了什么变化?积发生了什么变化?积扩大的倍数与被乘数、乘数扩大的倍数有什么关系?
通过讨论得出:积扩大的倍数,就是被乘数和乘数扩大的倍数的乘积。
根据这一规律,你能很快说出下组题的积吗?
18×4=1800×400=180×40=18000×4000=
3.写出数量关系,并列式计算。
花布每米6.5元,买2米、3米、4米各用多少元?
(1)总价=单价×数量。
列式:6.5×2=13(元) 6.5×3=19.5(元) 6.5×4=26(元)
(2)说出上面各算式的意义。(6.5×2表示2个6.5是多少或6.5的2倍是多少。)
(二)学习新课
1.出示例2:花布每米6.5元,买0.5米和0.82米各用多少元?
(1)根据上面的数量关系列式:
6.5×0.5 6.5×0.82
观察例2与复习题3有何不同?(复习题中的乘数都是整数。例2中的乘数都是小数。)
这就是我们今天要研究的“”。(板书课题)
(2)理解的意义。
思考:乘数是小数与乘数是整数的意义能相同吗?
学生试着画图理解6.5×0.5和6.5×0.82的意义
。
6.5×0.5和6.5×0.82各表示什么?
0.5米的总价:6.5×0.5表示求6.5的十分之五。
0.82米的总价:6.5×0.82表示求6.5的百分之八十二。
说出下列算式的意义:
1.5×0.7 3.5×0.25 4.5×0.4 3.2×0.125
小结:的意义是什么?(的意义是求这个数的十分之几,百分之几,千分之几,……)
(3)探讨的计算方法。
怎样计算6.5×0.5呢?
讨论:怎样把小数乘法转化成整数乘法呢?
学生试做后讲解算理:
(被乘数、乘数分别扩大了10倍,积就扩大了10×10=10O倍,要使积不变,就要把积缩小100倍。)
计算6.5×0.82。
学生计算后讲算理。(被乘数扩大10倍,乘数扩大100倍,积扩大了10×100=1000倍,要使积不变,就要把积缩小1000倍。)
2.小结:
(1)比较因数和积的小数位数,它们有什么联系?(积的小数位数是因数的小数位数之和。)
(2)的计算方法是什么?(先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。)
(3)比较的计算方法与小数乘以整数的计算方法有什么关系?(它们的计算方法是一致的。)
从而得出小数乘法的计算法则:计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(三)巩固反馈
1.课本P4:6;P5:8。
2.根据36×24=864,很快说出下面各题的积。
36×2.4=360×0.24= 0.36×0.24=
3.6×2.4=0.36×2.4=0.036×2400=
3.先判断积中有几位小数,再计算:
78×0.6=3.24×5.2=
4.说出下列算式的意义:
0.25×0.6=0.25×6=0.78×0.35=0.78×35=
思考:乘法算式的意义由什么数决定?(乘法算式的意义由乘数决定。当乘数是整数时,是求几个相同加数的和的简便运算;当乘数是纯小数时,是求这个数的十分之几,百分之几,千分之几,……)
5.作业 :课本P4:5,7;P5:9。
课堂教学设计说明
是小数乘以整数知识的扩展和延伸,教学中充分利用了已有知识和技能,重点分析了积的小数点位置的确定。首先从观察整数乘法算式得出积的变化规律,即整数相乘的积扩大的倍数为两个因数扩大的倍数的乘积。为理解小数乘法中积的小数位数就是两个因数的小数位数的和奠定了基础。
教学中重视引导学生运用转化的思想及知识的迁移规律,在充分理解算理的基础上,逐步总结出小数乘法的计算法则。
本文来源:https://jiaoan.jxxyjl.com/gaoershuxuejiaoan/164998.html
-
算术平均数和几何平均数的不等式_算术平均数与几何平均数(一)详细阅读
教学目标 (1)掌握“两个正数的算术平均数不小于它们的几何平均数”这一重要定理; (2)能运用定理证明不等式及求一些函数的最值; (3)能够解决一些简单的实际问题; (4)通过对不等式的结构的分析及特征的把握掌握重要不等式的联系; (5)通过对重要不等式的证明和等号成立的条件的分析,培养学生严谨科...
-
算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)详细阅读
第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...
-
曲线和方程_曲线和方程详细阅读
教学目标 (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题. (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念. (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点. (4)通过求曲线方程的教学,培养学生的转...
-
不等式的性质二是什么|不等式的性质(二)详细阅读
第二课时教学目标 1.理解同向不等式,异向不等式概念; 2.掌握并会证明定理1,2,3; 3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据; 4.初步理解证明不等式的逻辑推理方法 教学重点:定理1,2,3的证明的证明思路和推导过程教学难点 :理解证明不等式的逻辑推理方法教学...
-
[直线的倾斜角和斜率教案]直线的倾斜角和斜率详细阅读
教学目标 (1)了解直线方程的概念. (2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率. (3)理解公式的推导过程,掌握过两点的直线的斜率公式. (4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交...
-
算术平均数和几何平均数的不等式_算术平均数与几何平均数(二)详细阅读
第一课时一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用...
-
[简单的线性规划教案]简单的线性规划(二)详细阅读
线性规划教学设计方案(二)教学目标 巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.重点难点 理解二元一次不等式表示平面区域是教学重点. 如何扰实际问题转化为线性规划问题,并给出解答是教学难点.教学步骤【新课引入】 我们知道,二元一次不等式和二元一次不等式组都表示平面...
-
[二阶琴生不等式的证明]不等式的证明(二)详细阅读
第二课时教学目标 1.进一步熟练掌握比较法证明不等式; 2.了解作商比较法证明不等式; 3.提高学生解题时应变能力 教学重点 比较法的应用教学难点 常见解题技巧教学方法 启发引导式教学活动 (一)导入 新课 (教师活动)教师打出字幕(复习提问),请三位同学回答问题,教师点评. (学生活动...
-
【简单的线性规划一】简单的线性规划(一)详细阅读
教学目标 (1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域; (2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念; (3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题; (4)培养学生观察、联想以...
-
一元函数不等式的证明|不等式的证明(一)详细阅读
教学目标 (1)理解证明不等式的三种方法:比较法、综合法和分析法的意义; (2)掌握用比较法、综合法和分析法来证简单的不等式; (3)能灵活根据题目选择适当地证明方法来证不等式; (4)能用不等式证明的方法解决一些实际问题,培养学生分析问题、解决问题的能力; (6)通过不等式证明,培养学生逻辑推理...