等腰三角形的判定|等腰三角形的判定

八年级数学教案 2012-11-08 网络整理 晴天

【jiaoan.jxxyjl.com--八年级数学教案】

知识结构:

重点与难点分析:

本节内容的重点是定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.

本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.

教法建议:

本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:

(1)参与探索发现,领略知识形成过程

学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。

(2)采用“类比”的学习方法,获取知识。

由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。

(3)总结,形成知识结构

为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?


一.教学目标

1.使学生掌握定理及其推论;

2.掌握等腰三角形判定定理的运用;

3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

4.通过自主学习的发展体验获取数学知识的感受;

5.通过知识的纵横迁移感受数学的辩证特征.

二.教学重点:定理

三.教学难点:性质与判定的区别

四.教学用具:直尺,微机

五.教学方法:以学生为主体的讨论探索法

六.教学过程

1、新课背景知识复习

(1)请同学们说出互逆命题和互逆定理的概念

估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?

启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:

1.定理如果一个三角形有两个角相等,那么这两个角所对的边也相等.

(简称“等角对等边”).

由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.

已知:如图,△ABC中,∠B=∠C.

求证:AB=AC.

教师可引导学生分析:

联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.

注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.

(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.

(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.

2.推论1:三个角都相等的三角形是等边三角形.

推论2:有一个角等于60°的等腰三角形是等边三角形.

要让学生自己推证这两条推论.

小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.

证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.

3.应用举例

例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.

分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.

已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

求证:AB=AC.

证明:(略)由学生板演即可.

补充例题:(投影展示)

1.已知:如图,AB=AD,∠B=∠D.

求证:CB=CD.

分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.

证明:连结BD,在 中, (已知)

(等边对等角)

(已知)

(等教对等边)

小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.

2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.

分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.

证明: DE//BC(已知)

,  

BE=DE,同理DF=CF.

EF=DE-DF

EF=BE-CF

小结:

(1)等腰三角形判定定理及推论.

(2)等腰三角形和等边三角形的证法.

七.练习

教材 P.75中1、2、3.

八.作业 

教材 P.83 中 1.1)、2)、3);2、3、4、5.

九.板书设计


本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/2185.html

  • 用计算器求平方根怎么求_数学教案-用计算器求平方根

    教学设计示例 一.教学目标 1 会用计算器求数的平方根; 2 通过用计算器求值及近似值计算,提高学生的运算能力和动手能力; 3 通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣 二.教学重点与难点 教学重点:用计算器求一个正数的平方根的程序 教学难点 :准确用计算器求解一个...

    发布于:2012-11-14

    详细阅读
  • [最简二次根式]最简二次根式

    教学建议 1.教材分析 本节是在前两节的基础上,从实际运算的客观需要出发,引出的概念,然后通过一组例题介绍了化简二次根式的方法.本小节内容比较少(求学生了解的概念并掌握化简二次根式的方法),但是本节知识在全章中却起着承上启下的重要枢纽作用,二次根式性质的应用、二次根式的化简以及二次根式的运算都需要来...

    发布于:2012-11-14

    详细阅读
  • [看图编题数学教案]数学教案-作图题举例

    (1)知识结构 重点与难点分析 本节内容的重点是根据基本作图作出符合要求的几何图形。几何作图题同一般画图题不同,它规定只准用直尺和圆规为工具,而且每一步作图都必须有根有据,这样有助于培养学生的逻辑推理能力;另外,以后复杂的作图题常用基本作图中的三角形作基础,通过三角形来完成。 本节内容的难点是如...

    发布于:2012-11-14

    详细阅读
  • 数学教案|数学教案-菱形

    教学建议 知识结构 重难点分析 本节的重点是菱形的性质和判定定理。菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要...

    发布于:2012-11-14

    详细阅读
  • [小班数学教案三角形]数学教案-关于三角形的一些概念

    教学目标 : (1)使学生理解三角形、三角形的边、顶点、内角的概念; (2)正确理解三角形的角平分线、中线、高这三个概念的含义、联系及区别; (3)能正确地画出一个三角形的角平分线、中线和高; (4)能用符号规范地表示一个三角形及六个元素; (5)通过对三角形有关概念的教学,提高学生对概念的辨析能力...

    发布于:2012-11-14

    详细阅读
  • 数学教案|数学教案-矩形 教学示例二

    一、教学目标 1.掌握矩形的定义,知道矩形与平行四边形的关系. 2.掌握矩形的性质定理. 3.使学生能应用矩形定义、性质等知识,解决简单的证明题和计算题,进一步培养学生的分析能力. 4.通过性质的学习,体会矩形的应用美. 二、教法设计 观察、启发、总结、提高,类比探讨,讨论分析,启发式. 三、重点...

    发布于:2012-11-14

    详细阅读
  • 最简二次根式表_数学教案-最简二次根式 教学设计示例4

    教学目标 1.使学生理解最简二次根式的概念; 2.掌握把二次根式化为最简二次根式的方法. 教学重点和难点 重点:化二次根式为最简二次根式的方法. 难点:最简二次根式概念的理解. 教学过程 设计 一、导入 新课 计算: 我们再看下面的问题: 简,得到 从上面例子可以看出,如果把二次根式先进行化简...

    发布于:2012-11-14

    详细阅读
  • 二次根式的化简题|数学教案-二次根式的化简

    教学建议 知识结构 重难点分析 本节的重点是 的化简 本章自始至终围绕着二次根式的化简与计算进行,而 的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论 本节的难点是正确理解与应用公式 ...

    发布于:2012-11-14

    详细阅读
  • 【等腰三角形的性质】等腰三角形的性质

    知识结构 重点与难点分析: 本节内容的重点是及其推论。等腰三角形两底角相等(等边对等角)是证明同一三角形中两角相等的重要依据;而在推论中提到的等腰三角形底边上的高、中线及顶角平分线三线合一这条重要性质也是证明两线段相等,两个角相等及两直线互相垂直的重要依据。为证明线段相等,角相等或垂直平提供了方法...

    发布于:2012-11-14

    详细阅读
  • 一元二次方程初三数学教案|数学教案-一元二次方程

    教学目标 :(1)理解一元二次方程的概念 (2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。 (2)会用因式分解法解一元二次方程教学重点:一元二次方程的概念、一元二次方程的一般形式教学难点 :因式分解法解一元二次方程教学过程 :...

    发布于:2012-11-14

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计