梯形面积公式_梯形

八年级数学教案 2025-11-06 网络整理 晴天

【jiaoan.jxxyjl.com--八年级数学教案】

教学建议

知识结构

 

知识归纳

1.的定义及其有关概念

一组对边平行而另一组对边不平行的四边形叫做.平行的两边叫做的底,其中长边叫下底;不平行的两边叫腰;两底间的距离叫的高.一腰垂直于底的叫直角,两腰相等的叫等腰.

2.的性质及其判定

是特殊的四边形,它具有四边形所具有的一切性质,此外它的上下两底平行.

一组对边平行且另一组对边不平行的四边形是,但要判断另一组对边不平行比较困难,一般用一组对边平行且不相等的四边形是来判断.

3.等腰的性质和判定

性质:等腰在同一底上的两个角相等,两腰相等,两底平行,两对角钱相等,是轴对称图形,只有一条对称轴,底的中垂线就是它的对称轴.

判定:两腰相等的是等腰;同一底上的两个角相等的是等腰;对角钱相等的是等腰.

重难点分析

本节的重点是等腰的性质和判定.仍是具有特殊条件的四边形,它与平行四边形同属于特殊的四边形,它只有一组对边平行,而另一组对边不平行,但平行四边形两组对边分别平行.而等腰又是特殊的,它的许多性质和判定方法与矩形、菱形、正方形这些特殊的平行四边形有一定的相似性和可比性.

本节的难点也是等腰的性质和判定.由于等腰又是特殊的,它的许多性质和判定方法与矩形、菱形、正方形这些特殊的平行四边形有一定的相似性和可比性,虽然学生在小学时已经接触过等腰,在认识和理解上有一定的基础,但还是容易同特殊的平行四边形混淆,再加上问题往往要转化成平行四边形和三角形来处理,经常需要添加辅助线,学生难免会有无从下手的感觉,往往会有对题目一讲就明白但自己不会分析解答的情况发生,教师教学中要加以注意.

教学建议

1.关于的引入

生活中有许多的例子,小学又接触过内容,学生对并不陌生,的引入可从下面几个角度考虑:

①从生活实例引入,如防洪堤坝、飞机机翼,别致窗户、音箱外形等等;

②从小学学习过的旧知识复习引入;

③从发现的角度引入,比如给出一组图形,告诉学生这就是,然后寻找这些图形的共同点,根据共同点对进行定义以及性质、判定的研究;

④可用问题式引入,开始时设计一系列与概念相关的问题由学生进行思考、研究,然后给出的定义和性质.

2.关于的概念

的相关概念小学就已经接触过,但并不深入,在研究的概念时可设计如下问题加深对相关概念的理解:

①一组对边平行的四边形是不是?

②一组对边平行一组对边相等的图形是不是?

③一组对边相等的图形是不是?

④一组对边相等一组对边不相等的图形是不是?

⑤对角线相等的图形是不是?

⑥有两个角是直角的是不是直角?

⑦两个角相等的是不是等腰?

⑧对角线相等的是不是等腰?

 

一、教学目标

1. 掌握、等腰、直角的有关概念.

2. 掌握等腰的两个性质:等腰同一底上的两个角相等;两条对角线相等.

3. 能够运用的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力.

4. 通过添加辅助线,把的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想

二、教法设计

小组讨论,引导发现、练习巩固

三、重点、难点

1.教学重点:等腰性质.

2.教学难点:解决问题的基本方法(将转化为平行四边形和三角形及正确运用辅助线).

四、课时安排

1课时

五、教具学具准备

多媒体,小黑板,常用画图工具

六、师生互动活动设计

教师复习引入,学生阅读课本;学生在教师引导下探索等腰的性质,归纳小结转化的常见的辅助线

七、教学步骤

【复习提问】

1.什么样的四边形是平行四边形?平行四边形有什么性质?

2.小学学过的是什么样的四边形.

(让学生动手画一个,并找3名同学到黑板上来画,并指出上、下底和腰,然后由学生总结出的概念).

【引入新课】(板书课题)

同样是一个特殊的四边形,与平行四边形一样,它也有它的特殊性,今天我们就重点来研究这个问题.

1.及的有关概念

(l):一组对边平行而另一组对边不平行的四边形叫做.

(2)底:平行的一组对边叫做的底(通常把较短的底叫上底,较长的底叫下底).

(3)腰:不平行的一组对边叫做的腰.

(4)高:两底间的距离叫做高.

(5)直角:一腰垂直于底的.

(6)等腰:两腰相等的.

(以上这一过程借助多媒体或投影仪演示)

提醒学在注意:

①与平行四边形同属于特殊的四边形,因为它们具有不同的特殊条件,所以必然有不同的性质.

②平行四边形的对边平行且相等,而中,平行的一组对边不能相等(让学生想一想,为什么不能相等).

③上、下底的概念是由底的长短来定义的,而并不是指位置来说的.

2.等腰的性质

例1 如图,在 中, , ,求证: .

分析:我们学过“等腰三角形两底角相等”,如果能将等腰在同一底上的两个角转化为等腰三角形的两个底角,问题就容易解决了.

证明:(略)

由此得出等旧的性质定理:等腰在同一高上的两个角相等.

例2  如图,求证:等腰的两条对角线相等.

已知:在 中, , ,求证: .

分析:要证 ,只要用等腰的性质定理得出 ,然后再利用 ,即可得出 .

证明过程:(略).

由此得到多腰的第一条性质:等腰的两条对角线相等.除此之外,等腰还是轴对称图形,对称轴是过两底中点的直线.

3.解决问题常用的方法

在证明性质定理时,我们采取的方法是过点 作 交 于 ,从而把问题转化成三角形来解,实质上是相当于把采取 平行移动到 的位置,这种方法叫做平行移动(也可移对角线),这是解决问题常用的方法之—(让学生想一想,还可以用什么样的方法作辅助线来解决问题,多找几名学生回答,然后教师总结,可借助多媒体演示见图).

(1)“作高”:使两腰在两个直角三角形中.

(2)“移对角线”:使两条对角线在同一个三角形中.

(3)“延腰”:构造具有公共角的两个等腰三角形.

(4)“等积变形”,连结上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形.

综上所述:解决问题的基本思想和方法就是通过添加适当的辅助线,把问题转化为已经熟悉的平行四边形和三角形问题来解决.

【总结、扩展】

小结:(以提问的方式总结)

(1)的有关概念.

(2)性质(①-③).

(3)解决问题的基本思想和方法.

(4)解决问题时,常用的几种辅助线.

八、布置作业 

教材P179中2、3、4

九、板书设计

十、随堂练习

教材P176中1、3

本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/164308.html

  • 中心对称和中心对称图形的区别_中心对称和中心对称图形

    教学建议 知识归纳 1.中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点. 中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中...

    发布于:2025-11-06

    详细阅读
  • [等腰三角形的判定]等腰三角形的判定

    知识结构: 重点与难点分析: 本节内容的重点是定理 本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点 推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关...

    发布于:2025-11-06

    详细阅读
  • 相似三角形的性质_相似三角形的性质 (第2课时)

    (第2课时) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题. 3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理的应用...

    发布于:2025-11-06

    详细阅读
  • 【二次根式的乘法】二次根式的乘法

    教学建议 知识结构: 重点难点分析: 本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简 积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础 二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起 本节难...

    发布于:2025-11-06

    详细阅读
  • 基本作图|基本作图

    教学目标 : 1、知识目标: (1)要掌握尺规作图的方法及一般步骤; (2)掌握五种,明确尺规作图的意义。 2、能力目标: (1)通过“作图题”练习,提高学生的几何语言表达能力; (2)通过画图,培养学生的作图能力及动手能力 3、情感目标: (1)体验数学语言的简洁严谨。 (2)体会数学作图语言和...

    发布于:2025-11-06

    详细阅读
  • [二次根式的混合运算]二次根式的混合运算

    教学建议 知识结构 重难点分析 本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路...

    发布于:2025-11-06

    详细阅读
  • 多边形的内角和|多边形的内角和 教学设计示例3

    一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想....

    发布于:2025-11-06

    详细阅读
  • 平行四边形的判定|平行四边形的判定 (第二课时)

    七、教学步骤 【引入新课】 由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题). 【讲解新课】 (1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形. 引导学生结合图1,把已知,求证具体化. 分析:因为已知,所以只须...

    发布于:2025-11-06

    详细阅读
  • [相似三角形的判定]相似三角形

    教学建议 知识结构 本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理 重难点分析 的概念是本节的重点也是本节的难点 是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性 ...

    发布于:2025-11-06

    详细阅读
  • 【最简二次根式】最简二次根式 教学设计示例5

    教学目标 1.使学生进一步理解最简二次根式的概念; 2.较熟练地掌握把一个式子化为最简二次根式的方法. 教学重点和难点 重点:较熟练地把二次根式化为最简二次根式. 难点:把被开方数是多项式和分式的二次根式化为最简二次根式. 教学过程设计 一、复习 1.把下列各式化为最简二次根式: 请说出第(3),...

    发布于:2025-11-06

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计