【三角形的中位线定理】三角形的中位线
【jiaoan.jxxyjl.com--八年级数学教案】
教学目标
1.理解三角形中位线的概念,掌握它的性质及初步应用.
2.通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力.
教学重点与难点
重点是三角形中位线的性质定理.
难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用.
教学过程 设计
一、联想,提出问题.
1.(投影)复习平行线等分线段定理及两个推论(图4-89).
(1)请同学叙述定理及推论的内容.
(2)用数学表态式叙述图4-89(c)中的结论.
已知在ΔABC中,D为AB中点,DE∥BC,则AE=EC.
2.逆向思维,探索新结论.
引导学生思考:在图4-90中,反过来,若D,E分别为AB,AC中点,DE与BC有什么位置和数量关系呢?
启发学生逆向类比猜想:DE∥BC(逆向联想),DE= BC(因为AD= AB,AE= AC,类比联想ΔADE的第三边DE与ΔABC的第三边也存在相同的倍数关系).
由此引出课题.
二、证明猜想,形成定理
1.定义,强调它与三角形的中线的区别.
2.证明上述猜想成立,教师重点分析辅助线的作法的思考过程.
教师提示学生:所证结论即有平行又有数量关系,联想已有知识,可添加辅助线构造平行四边形,利用对平行且相等证明结论成立,或者用书上的同一法.教师引导学生发散思维后,还要注意比较,选择最简捷的证明方法.
3.板书一种证明过程.
4.将“猜想改成定理,引导学生用文字叙述出三角形中位线定理的具体内容.
三角形中位线定理:平行于第三边,并且等于它的一半.
5.分析定理成立的条件、结论及作用.
条件:连结两边中点得到中位线.
结论有两个,即位置关系和数量关系,根据题目需要选用.
作用:在已知两边中点的条件下,证明线段的平行关系及线段的倍分关系.
三、应用举例、变式练习
(投影)例1(直线给出图4-90的问题)根据图4-91中的条件,回答问题.
(1) 已知:如图4-91(a),D,E分别为AB和AC的中点DE=5.BC;
(2) 如图4-91(b),D,E,F分别为AB,AC,BC中点,AC=8,∠C=70°,求DF和∠EDF;
(3) 如图4-91(c),①它包含几个图4-90这样的基本图形?②哪些三角形全等?③有几个平行四边形?④若ΔDEF周长为10 cm,求ΔABC的周长.⑤若ΔABC的面积等于20cm2,求ΔDEF的面积.⑥AF与DE有何关系?怎样用语言叙述这结论?
分析:
(1) 可利用复合投影片实现三个图的叠加过程,以提高课堂效益并帮助学生建立分解基本图形的思想.
(2) 通过此题总结:三角形三和中位线围成的三角形的周长等于原三角形周长的一半,面积等于原三角形面积的14.这个过程可以无限进行下去,如图4-92.
(3) 从解题过程可以得到:三角形的一条中位线(DE)与第三边上的中线(AF)互相平分.
(板书)例2 (包含图4-90的问题)如图4-93,AD是ΔABC的高,M,N和E分别为AB,AC,BC的中点.求证:(1)四边形MNDE为等腰梯形;(2)∠MEN=∠MDN.
分析:
(1) 由条件分析,图中可分解出“AD是ΔABC的高”,“是MN,ME,NE”,“直角三角形斜边上中线MD,ND” .想一想,这些基本图形都有什么性质?
(2) 从结论出发,要证四边形MEDN是等腰梯形,只需证MN∥DE,且MN≠DE及以下三种情况之一成立:①ME=ND;②MD=EN;③∠EMN=∠DNM.从而证得结论成立.
让学生口述,教师板书证明过程.
例3 构造图4-90问题.
(1) 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形;
(2)若已知四边形为特殊四边形呢?
已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,如图4-94.求证:四边形EFGH是平行四边形.
分析:
(1)已知四条线段的中点,可设法应用三角形中位线定理,找到四边形EFGH的边之间的关系.而四边形ABCD的对角线可以把四边形分成两个三角形,所以添加辅助线,连结AC或BD,构造“”的基本图形.
(2)让学生画图观察并思考此题的特殊情况,如图4-95,顺次连结各种特殊四边形中点得到什么图形?
投影显示:
四、师生共同小结
1.教师提问引起学生思考:
(1)这节课学习了哪些具体内容:
(2)用什么思维方法提出猜想的?
(3)应注意哪些概念之间的区别?
2.在学生回答的基础上,教师投影显示以下与三角形一边中点及线段倍分关系有关的基
本图形(如图4-96).
(1)注意三角形中线与中位线的区别,图4-96(a),(b).
(2)三角线的中位线的判定方法有两种:定义及判定定理,图4-96(b),(。).
(3)证明线段倍分关系的方法常有三种,图4-96(b),(d),().
3.先猜想后证明的研究问题方法;逆向思维,探究逆命题是否成立,由此经常得到一些好
的结论;添辅助线构造基本图形来使用性质的解题方法.
4.有这样的性质,那么梯形有中位线吗?它有类似的性质吗?(为下节
课作思维上的准备)
五、作业
课本第180页第4题,第184页第5,7,8题,第185页B组第1题.
补充题:(构造)
1.如图4-97,AD是上ABC的外角平分线,CD上AD于D.E是BC的中点.求证:(1)DE ∥/ AB:(2)DE = (AB+AC).
(提示:延长CD交BA延长线于F.)
2.如图 4-98,正方形 ABCD对角线交于点O,E是BO中点,连结”并延长交BC于F.求证:BF= CF.(提示:作OG∥EF交于BC于G.)
3.如图4-99,在四边形 ABCD中,AB=CD, E,F分别是AD,BC的中点,延长 BA和CD分别交FE的延长线于 G,H点.求证:∠BGF=∠CHF.(提示:连结 AC,取 AC中声、 M,连结EM,FM.)
课堂教学设计说明
本教学过程 设计需1课时完成.
1.本节课的设计,力求让学生通过逆向思维及类比联想自己实践“分析——猜想——证
明”的过程.变被动接受知识为主动应用已有知识,探索新知识,获得成功的喜悦.
2.在应用性质定理时,通过一组层次递进的变式题的训练,由直接给出定理的基本图形
到包含基本图形,学生分解图形后使用性质,再到通过添加辅助线构造基本图形来使用性质,
学生逐步学会运用性质来解决问题,他们的解题能力、思考问题的方法得到逐步提高.
本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/164280.html
-
中心对称和中心对称图形的区别_中心对称和中心对称图形详细阅读
教学建议 知识归纳 1.中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点. 中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中...
-
[等腰三角形的判定]等腰三角形的判定详细阅读
知识结构: 重点与难点分析: 本节内容的重点是定理 本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点 推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关...
-
相似三角形的性质_相似三角形的性质 (第2课时)详细阅读
(第2课时) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题. 3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理的应用...
-
【二次根式的乘法】二次根式的乘法详细阅读
教学建议 知识结构: 重点难点分析: 本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简 积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础 二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起 本节难...
-
基本作图|基本作图详细阅读
教学目标 : 1、知识目标: (1)要掌握尺规作图的方法及一般步骤; (2)掌握五种,明确尺规作图的意义。 2、能力目标: (1)通过“作图题”练习,提高学生的几何语言表达能力; (2)通过画图,培养学生的作图能力及动手能力 3、情感目标: (1)体验数学语言的简洁严谨。 (2)体会数学作图语言和...
-
[二次根式的混合运算]二次根式的混合运算详细阅读
教学建议 知识结构 重难点分析 本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路...
-
多边形的内角和|多边形的内角和 教学设计示例3详细阅读
一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想....
-
平行四边形的判定|平行四边形的判定 (第二课时)详细阅读
七、教学步骤 【引入新课】 由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题). 【讲解新课】 (1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形. 引导学生结合图1,把已知,求证具体化. 分析:因为已知,所以只须...
-
[相似三角形的判定]相似三角形详细阅读
教学建议 知识结构 本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理 重难点分析 的概念是本节的重点也是本节的难点 是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性 ...
-
【最简二次根式】最简二次根式 教学设计示例5详细阅读
教学目标 1.使学生进一步理解最简二次根式的概念; 2.较熟练地掌握把一个式子化为最简二次根式的方法. 教学重点和难点 重点:较熟练地把二次根式化为最简二次根式. 难点:把被开方数是多项式和分式的二次根式化为最简二次根式. 教学过程设计 一、复习 1.把下列各式化为最简二次根式: 请说出第(3),...