[线段的垂直平分线]线段的垂直平分线

八年级数学教案 2025-11-05 网络整理 晴天

【jiaoan.jxxyjl.com--八年级数学教案】

1、教材分析

(1)知识结构

(2)重点、难点分析

本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知的依据.

本节内容的难点是定理及逆定理的关系. 垂直平分线定理和其逆定理,题设与结论正好相反. 学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

2、  教法建议

本节课教学模式主要采用“学生主体性学习”的教学模式. 提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳. 教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人. 具体说明如下:

(1)参与探索发现,领略知识形成过程

学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”. 然后学生完成证明,找一名学生的证明过程,进行投影总结. 最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理. 这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

(2)采用“类比”的学习方法,获取逆定理

线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

(3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.


教学目标:

1、知识目标:

(1)掌握的性质定理及其逆定理;

(2)能运用它们证明两条线段相等或两条直线互相垂直;

2、能力目标:

(1)通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

(2)提高综合运用知识的能力.

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;;

(2)通过知识的纵横迁移感受数学的辩证特征.

教学重点:线段垂直平分线定理及其逆定理

教学难点:定理及逆定理的关系 

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

教学过程

1、新课背景知识复习

(1)线段垂直平分线的概念

(2)问题:(投影显示)

如图,CD是线段AB的垂直平分线,P为CD上任意一点,PA、PB有何关系?为什么?

整个过程,由学生完成. 找一名学生代表回答上述问题并

投影显示学生的证明过程.

2、定理的获得

让学生用文字语言将上述问题表述出来.

定理:线段垂直平分线上的点和这条线段两个端点的距离相等.

强调说明:线段垂直平分线性质定理是证明线段相等的一条依据,在计算、作图中也有重要作用.

学生根据上述学习,提出自己的问题(待定)

学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.

3、逆定理的获得

类比角平分线逆定理获得的过程,让学生讲解下一环节所要学习研究的内容.

这一过程,完全由学生自己通过小组的形式,代表到台前讲解.

逆定理:和一条线段两个端点距离相等的点,在这条上.

强调说明:定理与逆定理的联系与区别

相同点:结构相同、证明方法相同

不同点:用途不同,定理是用来证线段相等

4、定理与逆定理的应用

(1)讲解例1(投影例1)

例1 如图,△ABC中,∠C= ,∠A= ,AB的在垂线交AC于D,交AB于E

求证:AC=3CD

证明:∵DE垂直平分AB

∴AD=BD

∴∠1=∠A=

∴∠2=

∴CD= BD

∴CD= AD

∴AD=2CD

即AC=3CD

讲解例2(投影例2 )

例2:在△ABC中,AB=AC,AB的中垂直线与AC所在直线相交所得的锐角为 ,求底角B的大小.

(学生思考、分析、讨论,教师巡视,适当参与讨论)

解:(1)当AB的中垂线MN与AC相交时,如图(1),

∵∠ADE= ,∠AED=

∴∠A= -∠AED= - =

∵AB=AC ∴∠B=∠C

∴∠B=

(2)当的中垂线与的延长线相交时,如图(2)

∵∠ADE= ,∠AED=

∴∠BAE=-∠AED=-=

∵AB=AC ∴∠B=∠C

∴∠B=

例3 (1)在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A= ,求∠NMB的大小

(2)如果将(1)中∠A的度数改为 ,其余条件不变,再求∠NMB的大小

(3)你发现有什么样的规律性?试证明之.

(4)将(1)中的∠A改为钝角,对这个问题规律性的认识是否需要加以修改

解:(1)∵AB=AC

∴∠B=∠ACB

∴∠B=

∵∠BNM=

(2)如图,同(1)同理求得

(3)如图,∠NMB的大小为∠A的一半

5、课堂小结:

(1)线段垂直平分线性质定理和逆定理

(2)在应用时,易忽略直接应用,往往又重新证三角形的全等,使计算或证明复杂化.

6、布置作业 :

书面作业 P119#2、3

思考题:已知:如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高

求证:AD垂直平分EF

证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC

∴DE=DF

∴D在线段EF的垂直平分线上

在Rt△ADE和Rt△ADF中

∴Rt△ADE≌Rt△ADF

∴AE=AF

∴A点也在线段EF的垂直平分线上

∵两点确定一条直线

∴直线AD就是线段EF的垂直平分线

板书设计:


本文来源:https://jiaoan.jxxyjl.com/banianjishuxuejiaoan/164268.html

  • 中心对称和中心对称图形的区别_中心对称和中心对称图形

    教学建议 知识归纳 1.中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点. 中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中...

    发布于:2025-11-06

    详细阅读
  • [等腰三角形的判定]等腰三角形的判定

    知识结构: 重点与难点分析: 本节内容的重点是定理 本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点 推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关...

    发布于:2025-11-06

    详细阅读
  • 相似三角形的性质_相似三角形的性质 (第2课时)

    (第2课时) 一、教学目标 1.掌握相似三角形的性质定理2、3. 2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题. 3.进一步培养学生类比的教学思想. 4.通过相似性质的学习,感受图形和语言的和谐美 二、教法引导 先学后教,达标导学 三、重点及难点 1.教学重点:是性质定理的应用...

    发布于:2025-11-06

    详细阅读
  • 【二次根式的乘法】二次根式的乘法

    教学建议 知识结构: 重点难点分析: 本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简 积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础 二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起 本节难...

    发布于:2025-11-06

    详细阅读
  • 基本作图|基本作图

    教学目标 : 1、知识目标: (1)要掌握尺规作图的方法及一般步骤; (2)掌握五种,明确尺规作图的意义。 2、能力目标: (1)通过“作图题”练习,提高学生的几何语言表达能力; (2)通过画图,培养学生的作图能力及动手能力 3、情感目标: (1)体验数学语言的简洁严谨。 (2)体会数学作图语言和...

    发布于:2025-11-06

    详细阅读
  • [二次根式的混合运算]二次根式的混合运算

    教学建议 知识结构 重难点分析 本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路...

    发布于:2025-11-06

    详细阅读
  • 多边形的内角和|多边形的内角和 教学设计示例3

    一、素质教育目标 (一)知识教学点 1.使学生掌握四边形的有关概念及四边形的内角和外角和定理. 2.了解四边形的不稳定性及它在实际生产,生活中的应用. (二)能力训练点 1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力. 2.通过推导四边形内角和定理,对学生渗透化归思想....

    发布于:2025-11-06

    详细阅读
  • 平行四边形的判定|平行四边形的判定 (第二课时)

    七、教学步骤 【引入新课】 由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题). 【讲解新课】 (1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形. 引导学生结合图1,把已知,求证具体化. 分析:因为已知,所以只须...

    发布于:2025-11-06

    详细阅读
  • [相似三角形的判定]相似三角形

    教学建议 知识结构 本节首先给出了的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理 重难点分析 的概念是本节的重点也是本节的难点 是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究比研究全等三角形更具有一般性 ...

    发布于:2025-11-06

    详细阅读
  • 【最简二次根式】最简二次根式 教学设计示例5

    教学目标 1.使学生进一步理解最简二次根式的概念; 2.较熟练地掌握把一个式子化为最简二次根式的方法. 教学重点和难点 重点:较熟练地把二次根式化为最简二次根式. 难点:把被开方数是多项式和分式的二次根式化为最简二次根式. 教学过程设计 一、复习 1.把下列各式化为最简二次根式: 请说出第(3),...

    发布于:2025-11-06

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计