[不不等式的基本性质]数学教案-不等式基本性质

七年级数学教案 2017-01-28 网络整理 晴天

【jiaoan.jxxyjl.com--七年级数学教案】

不等式的基本性质

 

教学目的

掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。

 

教学过程 

师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?

第一组:1+2=3; a+b=b+a;  s =ab;  4+x =7.

生:第一组都是等式,第二组都是不等式。

师:那么,什么叫做等式?什么叫做不等式?

生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。

师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。

前面我们学过了等式,同学们还记得等式的性质吗?

生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以( 除数不为零)同一个数,所得到的仍是等式。

师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。

练习1  (回答)用小于号“<”或大于号“>”填空。

(1)7 ___ 4;    (2)- 2____6;     (3)- 3_____ -2;  (4)- 4_____-6

练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。

(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?

(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?

(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?

生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的方向改变了!

师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?

生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。

师:有没有不同的意见?大家都同意他的看法吗?可能还有同学不放心,让我们再做一些试验。

练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)-2,看看不等号的方向是否改变:

     7>4;-2<6;-3<-2;-4>-6。

师:现在我们可以归纳出不等式的基本性质,一般地说,不等式的基本性质有三条:

性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向      。

(让同学回答。)

性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向     。(让同学回答。)

性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向      。(让同学回答。)

现在请大家翻开课本,一起朗读用黑体字写的三条基本性质。

不等式的这三条基本性质,都可以用数学语言表达出来,先请一位同学说一说第一条基本性质。

生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。

师:对a和b有什么要求吗?对c有什么要求?

生:没有什么要求。

师:哪位同学来回答第二、三条性质?

生甲:如果a<b,且c>0, 那么ac<bc(或     );如果a>b,且c>0,那么ac>bc(或

 


 生乙:如果a<b,且c<0, 那么ac>bc(或     );如果a>b,且c<0,那么ac<bc(或

师:这两条性质中,对a、b、c有什么要求?

生:对a、b没什么要求,特别要注意c是正数还是负数。

师:很好,c可以为零吗?

生:c不能为零。因为c为零时,任何不等式两边都乘以零就变成等式了。

师:好!应用刚才学到的基本性质,我们来看下面的例题。

[例1]按照下列条件,写出仍能成立的不等式:

 (1)5<9,两边都加上-3;

(2)9>4,两边都减去10;

(3)-5<3,两边都乘以4;

(4)14>-8,两边都除以-2。

解 (1)根据不等式基本性质1,在不等式59的两边都加上-3,不等号的方向不变,所以

       5+(-3)<9+(-3),

          2<6

(2)根据不等式基本性质1,得

9-10>4-10

       -1>-6

(3)根据不等式基本性质2,得

       -5×4<3×4

       -20<12

(4)根据不等式基本性质3,得

        14÷(-2)<(-8)÷(-2)

        -7<4

[例2]设a>b,用不等号连结下列各题中的两式:

(1)a-3与b-3;(2)2a与2b;(3)-a与-b.

师:哪一位同学来做这题?解题时,要讲清一步的理由。

生甲:因为a>b,两边都减去3,由不等式的基本性质1,得

a-3>b-3.

师:很好,大家都是这样做的吗?

生乙:我是这样做的,因为a>b,两边都加上(-3),由基本性质1,得

a-3>b-3.

师:好!这两位同学从不同的角度来分析题目,都得到了正确的结论。

生丙:因为a>b,2>0,由基本性质2,得2a>2b。

生丁:因为a>b,-1>0,由基本性质3,得-a>-b。

师:下面我们来看一组较复杂的问题,请大家都来开动脑筋,认真审题,仔细分析。[例3]判断以下各题的结论是否正确,并说明都理由:

(1)如果a>b,且c>0,那么ac>bd;

(2)如果a>b,那么ac2>bc2;

(3)如果ac2>bc2,那么a>b;

(4) 如果a>b,那么a-b>0;

(5)如果ax>b,且a≠0,那么x<     ;

(6)如果a+b>a;

 

生甲:(1)不对,当c=d≤0时,ac>bd不成立。

生乙:(2)也不对,因为c2是一个非负数,当c=0时,ac2>bc2不成立。

生丙:(3)对,因为ac2>bc2成立,则c2一定大于零,根据不等式基本性质2,得a>b出。

(4)对,根据不等式基本性质,由a>b,两边减去b得a-b>0。

(5)不对,当a<0时,根据不等式基本性质3,得 。

(6)不对,因为当b<0时,根据不等式基本性质1,得a+b<a;而当b=0时,则有a+b=a。

师:同学们回答得很好。今天我们学习了不等式的基本性质,我们不仅要理解这三条性质,还要能灵活运用。         

课外做以下作业 :略。

 

教案说明

(1)       不等式的基本性质的教学,是分成两个阶段进行的。在初中阶段,对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的重要方法。科学上的许多发现,大多离不开试验和观察。大数学家欧拉说过:“数学这门科学,需要观察,也需要试验。”通过教学培养学生掌握由试验发现规律的方法,具有重要的意义。当然通过几个特殊的试验,就得出一般的结论,是不严密的。但对初中学生来说,初次接触不等式,是不能要求那么严密的。

(2)       不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,在教学过程 中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。对比的方法,也是学习数学的一种重要方法。

(3)       在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。因为它比较抽象,特别是在运用不等式的基本性质2和性质3时,学生必须考虑不等式两边同乘(或同除)的这个用字母表示的数的符号是什么,或者还要对这个用字母表示的数,按正数、负数或零三种情况加以讨论。在教学过程 中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。对于正确的见解,教师可以让学生说出解题的依据;对于错误的见解,教师可以进行启发引导,发动学生自己找出错误的原因,自己修正见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。

本文来源:https://jiaoan.jxxyjl.com/qinianjishuxuejiaoan/48466.html

  • 整式的加减|整式的加减

    教学设计示例 一、素质教育目标 (一)知识教学点 1.理解:实质就是去括号,合并同类项. 2.掌握:学生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤. 3.运用:能够正确地进行运算. (二)能力训练点 1.培养用代数的方法解决实际生活中的问题的能力和口头表达能力. 2.培养学生用...

    发布于:2026-01-20

    详细阅读
  • 一元一次不等式组和它的解法视频_一元一次不等式组和它的解法

    教学建议 一、知识结构 本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结. 二、重点、难点分析 本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的基本性质对不等式进行...

    发布于:2026-01-20

    详细阅读
  • 【同底数幂的除法】同底数幂的除法

    教学建议 1.知识结构: 2.教材分析 (1)重点和难点 重点: 准确、熟练地运用法则进行计算.性质是幂的运算性质之一,是整式除法的基础,一定要打好这个基础 难点: 根据乘、除互逆的运算关系得出法则.教科书中根据除法是乘法的逆运算,从计算 和 这两个具体的同底数的幂的除法,到计算底数具有一般性的...

    发布于:2026-01-20

    详细阅读
  • 【相交线对顶角公式】相交线、对顶角

    教学建议 1.知识结构 2.重点和难点分析 (1)本节课的重点是对顶角的概念和性质,这些是重要的基础知识,在以后的学习中常常要用到,要求学生掌握.对顶角的概念是结合图形描述的,这样描述,便于学生在图形中辨认 教学中不必让学生背这些词句,而是让学生抓住概念的本质,教给学生在图形中如何辨认它们 辨认对...

    发布于:2026-01-20

    详细阅读
  • 【角的比较与运算】角的比较

    教学建议 一、知识结构 二、重点、难点分析 本节教学的重点是角的大小比较,角平分线的意义,两个角的和、差、倍、分的意义.难点是空间观念,几何识图能力的培养.的相关知识是进一步学习角的度量和画法,以及进一步研究平面几何图形的基础 1﹒角的大小的比较有两种方法: (1)重合法:即把要比较的两个角的顶点...

    发布于:2026-01-20

    详细阅读
  • 平行线的判定_平行线的判定

    教学建议 1、教材分析 (1)知识结构: 由平行线的画法,引出公理(同位角相等,两直线平行).由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理. (2)重点、难点分析 : 本节的重点是:公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定...

    发布于:2026-01-20

    详细阅读
  • 【命题】命题

    教学建议 (一)教材分析 1、知识结构 2、重点、难点分析 重点:找出的题设和结论.因为找出一个的题设和结论,是对该深刻理解的前提,而对理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础. 难点:找出一个的题设和结论.因为理解和掌握一个,一定要分清它的题设和结论,所以找出一个的题设和...

    发布于:2026-01-20

    详细阅读
  • 平行线的判定_平行线的判定

    教学建议 1、教材分析 (1)知识结构: 由平行线的画法,引出公理(同位角相等,两直线平行).由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理. (2)重点、难点分析 : 本节的重点是:公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定...

    发布于:2026-01-20

    详细阅读
  • 【角头2】角

    教学建议 一、知识结构 二、重点、难点分析 的定义既是本节教学的重点,也是难点.本节知识建立在射线、线段等相关知识的基础上,同时也是进一步学习的度量、比较、画法,以及深入研究平面几何图形的基础. 1.的定义是由实际生活中具有的形象的物体抽象出来的,理解的定义一定要明确的边为射线,为平面内的点集....

    发布于:2026-01-20

    详细阅读
  • 【一元一次方程的解法教案】一元一次方程和它的解法

    一、素质教育目标 (一)知识教学点 1.要求学生学会用移项解方程的方法. 2.使学生掌握移项变号的基本原则. (二)能力训练点 由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力. (三)德育渗透点 用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想. (四)美育渗透...

    发布于:2026-01-20

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计