【有理数的减法】有理数的减法
【jiaoan.jxxyjl.com--七年级数学教案】
教学目标
1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;
2.培养学生观察、分析、归纳及运算能力.
教学重点和难点
有理数减法法则.
课堂教学过程 设计
一、从学生原有认知结构提出问题
1.计算:
(1)(-2.6)+(-3.1); (2)(-2)+3; (3)8+(-3); (4)(-6.9)+0.
2.化简下列各式符号:
(1)-(-6); (2)-(+8); (3)+(-7);
(4)+(+4); (5)-(-9); (6)-(+3).
3.填空:
(1)______+6=20; (2)20+______=17;
(3)______+(-2)=-20; (4)(-20)+______=-6.
在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是,减法是加法的逆运算.
二、师生共同研究有理数减法法则
问题1 (1)(+10)-(+3)=______ ;
(2)(+10)+(-3)=______.
教师引导学生发现:两式的结果相同,即
(+10)-(+3)=(+10)+(-3).
教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性?
问题2 (1)(+10)-(-3)=______ ;
(2)(+10)+(+3)=______.
对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?
(2)的结果是多少?
于是,(+10)-(-3)=(+10)+(+3).
至此,教师引导学生归纳出有理数减法法则:
减去一个数,等于加上这个数的相反数.
教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.
三、运用举例 变式练习
例1 计算:
(1)(-3)-(-5); (2)0-7.
例2 计算:
(1)18-(-3); (2)(-3)-18; (3)(-18)-(-3); (4)(-3)-(-18).
通过计算上面一组有理数减法算式,引导学生发现:
在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.
例3 计算:
(1)(-3)-[6-(-2)]; (2)15-(6-9).
例4 15℃比5℃高多少? 15℃比-5℃高多少?
课堂练习
1.计算(口答):
(1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);
(4)(-4)-9; (5)0-(-5); (6)0-5.
2.计算:
(1) 15-21; (2)(-17)-(-12); (3)(-2.5)-5.9;
四、小结
1.教师指导学生阅读教材后强调指出:
由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.
2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.
五、作业
1.计算:
(1)-8-8; (2)(-8)-(-8); (3)8-(-8); (4)8-8;
(5)0-6; (6)6-0; (7)0-(-6); (8)(-6)-0.
2.计算:
(1)16-47; (2)28-(-74); (3)(-37)-(-85); (4)(-54)-14;
(5)123-190; (6)(-112)-98; (7)(-131)-(-129); (8)341-249.
3.计算:
(1)1.6-(-2.5); (2)0.4-1; (3)(-3.8)-7; (4)(-5.9)-(-6.1);
(5)(-2.3)-3.6; (6)4.2-5.7; (7)(-3.71)-(-1.45); (8)6.18-(-2.93).
4.计算:
5.计算:
(1)(3-10)-2; (2)3-(10-2); (3)(2-7)-(3-9);
6.当a=11,b=-5,c=-3时,求下列代数式的值:
(1)a-c; (2) b-c;
(3)a-b-c; (4)c-a-b.
利用有理数减法解下列问题(第7~9题):
7.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392m.两处高度相差多少?
8.分别求出数轴上两点间的距离:
(1)表示数6的点与表示数2的点;
(2)表示数5的点与表示数0的点;
(3)表示数2的点与表示数-5的点;
(4)表示数-1的点与表示数-6的点.
9.某地一周内每天的最高气温与最低气温如下表,哪天的温差最大?哪天的温差最小?
10*.填空:
(1)如果a-b=c,那么a=______;
(2)如果a+b=c,那么a=______;
(3)如果a+(-b)=c,那么a=______;
(4)如果a-(-b)=c,那么a=______.
11*.用“>”或“<”号填空:
(1)如果a>0,b<0,那么a-b______0;
(2)如果a<0,b>0,那么a-b______0;
(3)如果a<0,b<0,|a|>|b|,那么a-b______0;
(4)如果a<0,b<0,那么a-(-b)______0.
12*.解下列方程:
(1)x+8=5; (2)x-(-7)=-3;
(3)x-11=-4; (4)6+x=-10.
13*.把下面加减法混合运算的式子改成只含加法的式子:
(1)-30-15+13-(-7); (2)-7-4+(-9)-(-5).
课堂教学设计说明
根据斯托利亚尔的观点,我们把教学作为一个过程,那么在教学一个新的内容时,我们总是把学生视为探索者,将教学过程 模拟成一个“科研过程”,引导学生发现矛盾,提出问题,最后用新的理论来解决原先提出问题,解决原先发现的矛盾.这种教法,归纳起来就是“三部曲”:提出问题——建立理论——解决问题.这节课的设计正是这一教学方法的具体体现.
本文来源:https://jiaoan.jxxyjl.com/qinianjishuxuejiaoan/48272.html
-
[命题]命题 教学设计方案(二)详细阅读
教学目标 1.使学生了解命题、真命题和假命题等概念. 2.使学生了解几何命题是由“题设”和“结论”两部分组成.能够初步区分命题的题设和结论,或把命题改写成“如果……,那么……”的形式 重点和难点 分清命题的题设和结论,既是教学的重点又是教学的难点. 教学过程 一、引入 请大家随意说出一些语句,教...
-
【垂线的定义】垂线详细阅读
教学建议 1.知识结构 2.重点和难点分析 (1)本节的重点是会用两直线垂直的定义判定两条直线垂直和点到直线的距离的概念 两直线垂直的定义中虽然强调“有一个角是直角”,但实际上由对顶角和邻补角的性质,可以得到其他三个角也都是直角,因此不指定哪一个角是直角,实际上无论哪一个角是直角,都可以判定两直线...
-
【角的画法】角的画法详细阅读
教学建议 一、知识结构 二、重点、难点分析本节教学的重点是能够根据题目要求画出已知角,教学的难点是类似五角星等基本图形的画法.熟练掌握培养学生的画图能力以及进一步学习平面几何图形画法的基础. 画角的方法一般有两种:用量角器画角或用三角板画角. 1.用量角器画角 画一个角等于已知角,可以利用量角器...
-
财务计算器简单计算_用计算器进行数的简单计算详细阅读
教学建议 一、重点、难点分析 本节教学的重点是会用计算器进行数的加、减、乘、除、乘方运算;难点是用交换键输入数字.关键是掌握计算器功能键的用法. 二、知识结构 三、教法建议 这一小节的教学需要注意: 1.目前在国内市场上,能见到的科学计算器的型号很多,这些计算器的功能基本相同,在面板的设计与使用方法...
-
一次方程组的应用 数学培优_一次方程组的应用 第三课时详细阅读
(第三课时) 一、素质教育目标 (一)知识教学点 1.会列出三元一次方程组解简单的应用题. 2.会用待定系数法解题. (二)能力训练点 培养学生分析问题、解决问题的能力. (三)德育渗透点 1.使学生进一步了解代数方法的优越性、实用性. 2.渗透特定系数法这一重要的思想方法. 3.了解我国古数学的光...
-
9.1.1不等式及其解集教案_9.1.1不等式及其解集详细阅读
课题: 【学习目标】:㈠知识与技能:1 使学生感受到生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义;2 让学生自发地寻找不等式的解,会在数轴上正确地表示出不等式的解集;3 能够根据题意准确迅速地列出相应的不等式。㈡过程与方法:.1 通过汽车行驶过a地这一实例的研究,使学生体会...
-
空间里的平行关系的重要定理|空间里的平行关系详细阅读
教学建议 一、知识结构 在平行线知识的基础上,教科书以学生对长方体的直观认识为基础,通过观察长方体的某些棱与面、面与面的不相交,进而把它们想象成空间里的直线与平面、平面与平面的不相交,来建立空间里平行的概念.培养学生的空间观念. 二、重点、难点分析 能认识空间里直线与直线、直线与平面、平面与平面的平...
-
【下学期是几月到几月】下学期 射线、线段详细阅读
教学设计示例 一、素质教育目标 (一)知识教学点 1.了解直线、射线和线段等概念的区别. 2.理解射线及其端点、线段及其端点、延长线等概念. 3.掌握射线、线段的表示方法. (二)能力训练点 对学生继续进行几何语言和识图能力的训练,使学生逐步熟悉几何语句.准确区别直线、射线和线段等几种几何图形. (...
-
一次方程组的应用 数学培优_一次方程组的应用详细阅读
(第一课时) 一、素质教育目标 (一)知识教学点 会列二元一次方程组解简单的应用题,并能检查结果是否正确、合理. (二)能力训练点 培养学生分析问题、解决问题的能力. (三)德育渗透点 1.体会代数方法的优越性. 2.向学生进一步渗透把未知转化为已知的思想. 3.向学生进行理论联系实际的教育. (四...
-
实心球训练方法与技巧|实心球详细阅读
评优体育课教案指导教师 :崔春林 授课教师 韩文超 时间:XX年4月2日授课班级:初一(3)班教材:1、实心球2、耐力健美操3、课课练项目设想: 中学生,特别是初中生,力量和耐力素质尤其薄弱。性格偏静的女生,由于缺乏男生那种粗犷、好胜及阳刚之气。其力量和耐力素质就显得更差了。本课能针对初二女...