【代数式的值】代数式的值

七年级数学教案 2026-01-18 网络整理 晴天

【jiaoan.jxxyjl.com--七年级数学教案】

教学目标

1.使学生掌握的概念,能用具体数值代替代数式中的字母,求出;

2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

教学建议

1.重点和难点:正确地求出。

2.理解:

(1)一个是由代数式中字母的取值而决定的.所以一般不是一个固定的数,它会随着代数式中字母取值的变化而变化.因此在谈时,必须指明在什么条件下.如:对于代数式 ;当 时,代数式 的值是0;当 时,代数式 的值是2.

(2)代数式中字母的取值必须确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如: 中 不能取1,因为 时,分母为零,式于 无意义;如果式子中字母表示长方形的长,那么它必须大于0.

3.求的一般步骤:

在的概念中,实际也指明了求的方法.即一是代入,二是计算.求时,一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行.

4。求时的注意事项:

(1)代数式中的运算符号和具体数字都不能改变。

(2)字母在代数式中所处的位置必须搞清楚。

(3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。

5.本节知识结构:

本小节从一个应用代数式的实例出发,引出的概念,进而通过两个例题讲述求的方法.

6.教学建议

(1) 是由代数式里的字母所取的值决定的,因此在教学过程中,注意渗透对应的思想,这样有助于培养学生的函数观念.

(2) 列代数式是由特殊到一般, 而求, 则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想.


教学设计示例

(一)

教学目标

1使学生掌握的概念,能用具体数值代替代数式中的字母,求出;

2培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

教学重点和难点

重点和难点:正确地求出

课堂教学过程设计

一、从学生原有的认识结构提出问题

1用代数式表示:(投影)

(1)a与b的和的平方;(2)a,b两数的平方和;

(3)a与b的和的50%

2用语言叙述代数式2n+10的意义

3对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)

某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,是40;当n=20时,是50我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值这就是本节课我们将要学习研究的内容

二、师生共同研究的意义

1用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做

2结合上述例题,提出如下几个问题:

(1)求代数式2x+10的值,必须给出什么条件?

(2)是由什么值的确定而确定的?

教师引导学生说出:“是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象

然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应

(3)求可以分为几步呢?在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化)

例1  当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值

解:当x=7,y=4,z=0时,

x(2x-y+3z)=7×(2×7-4+3×0)

=7×(14-4)

=70

注意:如果代数式中省略乘号,代入后需添上乘号

例2  根据下面a,b的值,求代数式a2- 的值

(1)a=4,b=12,(2)a=1 ,b=1

解:(1)当a=4,b=12时,

a2- =42- =16-3=13;

(2)当a=1 ,b=1时,

a2- =- =

注意(1)如果字母取值是分数,作乘方运算时要加括号;

(2)注意书写格式,“当……时”的字样不要丢;

(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果

三、课堂练习

1(1)当x=2时,求代数式x2-1的值;

(2)当x=,y=时,求代数式x(x-y)的值

2当a=,b=时,求下列:

(1)(a+b)2;   (2)(a-b)2


3当x=5,y=3时,求代数式 的值

答案:1.(1)3;  (2) ;  2.(1) ;(2) ; 3. .

四、师生共同小结

首先,请学生回答下面问题:

1本节课学习了哪些内容?

2求应分哪几步?

3在“代入”这一步应注意什么”

其次,结合学生的回答,教师指出:(1)求,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做;(2)是由代数式里字母所取值的确定而确定的.

五、作业 

当a=2,b=1,c=3时,求下列:

(1)c-(c-a)(c-b);   (2) .

(二)

教学目标

1.使学生掌握的概念,会求;

2.培养学生准确地运算能力,并适当地渗透对应的思想.

教学重点和难点

重点:当字母取具体数字时,对应的的求法及正确地书写格式.

难点:正确地求出.

课堂教学过程设计

一、从学生原有的认识结构提出问题

1.用代数式表示:(投影)

(1)a与b的和的平方;(2) a,b两数的平方和;

(3)a与b的和的50%.

2.用语言叙述代数式2n+10的意义.

3.对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打出投影)

某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,是40;当n=20时,是50.我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值.这就是本节课我们将要学习研究的内容.

二、师生共同研究的意义

1.用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做.

2.结合上述例题,提出如下几个问题:

(1)求代数式2n+10的值,必须给出什么条件?

(2)是由什么值的确定而确定的?

教师引导学生说出:“是由代数式

里字母的取值的确定而确定的”之后,可用图示帮助

学生加深印象.

然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应.

(3)求可以分为几步呢?在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案.(教师板书例题时,应注意格式规范化)

例1  当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.

解:当x=7,y=4,z=0时,

x(2x-y+3z)=7×(2×7-4+3×0)

=7×(14-4)

=70.

注意:如果代数式中省略乘号,代入后需添上乘号.

解:(1)当a=4,b=12时,

注意(1)如果字母取值是分数,作乘方运算时要加括号;

(2)注意书写格式,“当……时”的字样不要丢;

(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数.

最后,请学生总结出求代数值的步骤:

①代入数值  ②计算结果

三、课堂练习

1.(1)当x=2时,求代数式x2-1的值;

2.填表:(投影)

(1)(a+b)2;  (2)(a-b)2.

四、师生共同小结

首先,请学生回答下面问题:

1.本节课学习了哪些内容?2.求应分哪几步?

3.在“代入”这一步应注意什么?

其次,结合学生的回答,教师指出:(1)求,就是用数值代替代数式里的字母,按照代数式的运算顺序,直接计算后所得的结果就叫做;(2)是由代数式里字母所取值的确定而确定的.

五、作业 

1.当a=2,b=1,c=3时,求下列:

2.填表

3.填表

课堂教学设计说明

由于是由代数式里的字母所取的值决定的,因此在设计教学过程中,注意渗透对应的思想,这样有助于培养学生的函数观念。


本文来源:https://jiaoan.jxxyjl.com/qinianjishuxuejiaoan/167570.html

  • 平行线的性质|平行线的性质

    教学建议 1、教材分析 (1)知识结构 : (2)重点、难点分析 本节内容的重点是.教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等”的证明过程.而且直接运用了“∵”、“∴”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透.因此,这一节课有着承上启下的作用...

    发布于:2026-01-18

    详细阅读
  • 【平行线的判定】平行线的判定

    教学建议 1、教材分析 (1)知识结构: 由平行线的画法,引出公理(同位角相等,两直线平行).由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理. (2)重点、难点分析 : 本节的重点是:公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定...

    发布于:2026-01-18

    详细阅读
  • 【一元一次方程的解法教案】一元一次方程和它的解法

    教学目的:掌握移项法则,并能利用移项法则准确 迅速地解一元一次方程教学重点:移项法则教学难点 :通过引例归纳移项法则教学过程 :一、复习提问 1、什么叫等式的性质? 2、什么叫方程? 二、新课:导语 :从这节课开始学习和研究,在...

    发布于:2026-01-18

    详细阅读
  • [简易方程]简易方程

    教学目标 1.会解,并能用解简单的应用题; 2.通过代数法解进一步培养学生的运算能力,发展学生的应用意识; 3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。教学建议 一、教学重点、难点 重点:的解法; 难点:根据实际问题中的数量关系正确地列出方程并求解。 二、重点、难点分析 解的基本...

    发布于:2026-01-18

    详细阅读
  • [二元一次方程组]二元一次方程组

    教学目的1、使学生二元一次方程、的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。2、使学生了解二元一次方程、的解的含义,会检验一对数是不是它们的解。3、通过和一元一次方程的比较,加强学生的类比的思想方法。通过“引例”的学习,使学生认识数学是根据实际的需要而产生发展的观点。教学...

    发布于:2026-01-18

    详细阅读
  • 简易方程|简易方程

    教学目标 1.会解,并能用解简单的应用题; 2.通过代数法解进一步培养学生的运算能力,发展学生的应用意识; 3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。教学建议 一、教学重点、难点 重点:的解法; 难点:根据实际问题中的数量关系正确地列出方程并求解。 二、重点、难点分析 解的基...

    发布于:2026-01-18

    详细阅读
  • 【一元一次方程的解法教案】一元一次方程和它的解法

    一、素质教育目标 (一)知识教学点 1.要求学生学会用移项解方程的方法. 2.使学生掌握移项变号的基本原则. (二)能力训练点 由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力. (三)德育渗透点 用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想. (四)美育渗透...

    发布于:2026-01-18

    详细阅读
  • 《走一步|《走一步,再走一步》教案设计

    课题: 邓稼先教学目的: 1、 掌握本文的生字新词,理解文中两个古诗文小段。 2、 灵活运用速读、默读、朗读等阅读方式阅读课文。 3、 学习邓稼先将个人生命奉献给祖国国防事业的崇高情怀。 教学重点: 用速读、默读、朗读等阅读方式阅读课文。 教学难点 : 1、 第一部分写百年屈辱史的用意; 2、 把邓...

    发布于:2026-01-18

    详细阅读
  • 同类项的定义|同类项

    教学设计示例 一、素质教育目标 (一)知识教学点 1.掌握:什么样的项是. 2.了解:了解可以合并. 3.应用:会合并,会利用合并的知识解决一些实际问题. (二)能力训练点 通过例题的讲解与训练,使学生熟练进行的合并. (三)德育渗透点 通过由数的加减推广到的合并,可以培养学生由特殊到一般的思维规律...

    发布于:2026-01-18

    详细阅读
  • 【一元一次方程的应用】一元一次方程的应用

    5 3 用方程解决问题(2)--打折销售 学 习目标:1、进一步经历运用方程解决实际问题的过程。2、提高学生找等量关系列方程的能力。3、培养学生的抽象、概括、分析和解决问题的能力。4、学会用数学的眼光去看待、分析现实生活中的情景。重点:1 如何从实际问题中寻找等量关系...

    发布于:2026-01-18

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计