九年级上册数学方差_九年级上册《方差与标准差》导学案

九年级数学教案 2016-02-26 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】

方差与标准差导学案

【学习目标】 1.了解方差的定义和计算公式。2. 理解方差概念的产生和形成的过程。
3. 会用方差计算公式来比较两组数据的波动大小。4. 经历探索极差、方差的应用过程,体会数据波动中的极差、方差的求法时以及区别,积累统计经验。
【学习重点、难点】重点:方差产生的必要性和应用方差公式解决实际问题。掌握其求法。
难点:理解方差公式,应用方差对数据波动情况的比较、判断。
【学习过程】
一、课前预习与导学
1 .如图是根据某地某段时间的每天最低气温绘成的折线图,那么这段时间最低气温的极差、众数、平均数依次是(    )a.5°,5°,4°  b.5°,5°,4.5°
c.2.8°,5°,4°        d.2.8°,5°,4.5°
2.一组数据:3,5,9,12,6的极差是_________.
3.数据-2,-1,0,1,2的方差是_________.
4. 五个数1,2,3,4,a的平均数是3,则a=________,
这五个数的方差是________.
5.分别计算下列数据的平均数和极差:
a:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;平均数=    ;极差=     . 
b:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2. 平均数=    ;极差=    .  
二、课堂学习研讨(约25分钟)
(一)情景创设:
乒乓球的标准直径为40mm,质检部门从a、b两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。结果如下(单位:mm):
a厂:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;
b厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
你认为哪厂生产的乒乓球的直径与标准的误差更小呢?
(1)请你算一算它们的平均数和极差。
(2)是否由此就断定两厂生产的乒乓球直径同样标准?
算一算(p书45-46)把所有差相加,把所有差取绝对值相加,把这些差的平方相加。
想一想:你认为哪种方法更能明显反映数据的波动情况?
(二)新知讲授:
1.方差
定义:设有n个数据,各数据与它们的平均数的差的平方分别是,…,我们用它们的平均数,即用

来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance),记作。
意义:用来衡量一批数据的         ,在样本容量相同的情况下,方差越大,说明数据的波动       , 越不稳定。
2.标准差:
方差的算术平方根,即=                              
例1、 填空题;
(1)一组数据:,,0,,1的平均数是0,则=   .方差     .
(2)如果样本方差,
那么这个样本的平均数为                .样本容量为                       .1234
(3)已知的平均数10,方差3,则的平均数为                   ,方差为                   .
例2、 选择题:
(1)样本方差的作用是(                    )
a、估计总体的平均水平              b、表示样本的平均水平
c、表示总体的波动大小    d、表示样本的波动大小,从而估计总体的波动大小
(2)已知样本数据101,98,102,100,99,则这个样本的标准差是(          )
   a、0               b、1             c、              d、2
例3、甲、乙两台机床生产同种零件,10天出的次品分别是甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?
 
三、反思与心得(约2分钟)
我的收获:                                                          
四、课堂检测
1 .一组数据1,-1,0,-1,1的方差和标准差分别是(  )
a.0,0    b.0.8,0.64    c.1,1    d.0.8,2 .某制衣厂要确定一种衬衫不同号码的生产数量,在做市场调查时,该商家侧重了解的是这种衬衫不同号码的销售数量的(     )
a. 平均数      b. 众数      c. 标准差      d. 中位数
3 .数据8,10,12,9,11的极差=           ;方差=_______.
4.质检部门对甲、乙两工厂生产的同样产品抽样调查,计算出甲厂的样本方差为0.99,乙厂的样本方差为1.02,那么,由此可以推断出生产此类产品,质量比较稳定的是_______厂.
5.已知一组数据的方差是s2=[(x1-2.5)2+(x2-2.5)2+(x3-2.5)2+…+(x25-2.5)2],则这组数据的平均数是_________.样本容量是_________。
 
五、作业布置
1.某中学人数相等的甲、乙两班学生参加了同一次数据测验,班平均分和方差分别为=82分,=82分, =245,=190.那么成绩较为整齐的是(     )1234
a.甲班       b.乙班       c.两班一样整齐  d.无法确定
2.样本方差的作用是(      )
a、估计总体的平均水平    b、表示样本的平均水平
c、表示总体的波动大小    d、表示样本的波动大小,从而估计总体的波动大小
3.在统计中,样本的标准差可以反映这组数据的 (      )
a.平均状态     b.分布规律     c.离散程度     d.数值大小
4.数据2,2,3,4,4的方差s2=_______;数据-2,-1,0,1,2的方差是________.
5. 若一组数据, ,… , 的方差为9,则数据,,…,的方差是_______,标准差是                。
6.五个数1,2,3,4,a的平均数是3,则a ________,这五个数的方差是________。
7.若一组数据3,一1,a,-3,3的平均数是a的,则这组数据的标准差是_________。
8.已知一组数据7、9、19、a、17、15的中位数是13,则这组数据的平均数是         ,
方差 是             
 
 

1.若一组数据a1,a2,…,an的方差是5,则一组新数据2a1,2a2,…,2an的方差是(    )
a.5     b.10     c.20     d.50
2.下列说法正确的是(      )
a.两组数据的极差相等,则方差也相等       b.数据的方差越大,说明数据的波动越小
c.数据的标准差越小,说明数据越稳定       d.数据的平均数越大,则数据的方差越大
3.已知一个样本1,3,2,5,4,则这个样本的标准差为______.
4.甲、乙两台机器分别罐装每瓶质量为500克的矿泉水。从甲、乙罐装的矿泉水中分别随机抽取了30瓶,测算得它们实际质量的方差是:,.那么_______(填“甲”或“乙”)罐装的矿泉水质量比较稳定.
5.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是_____.
 
6.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)
 
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
问:(1)哪种农作物的苗长的比较高?
(2)哪种农作物的苗长得比较整齐?
 
 
 
 
7.已知三组数据1,2,3,4,5;11,12,13,14,15和3,6,9,12,15.
(1)求这三组数据的平均数,方差和标准差.
 
平均数
方差
标准差
1,2,3,4,5
 
 
 
11,12,13,14,15
 
 
 
3,6,9,12,15
 
 
 
(2)对照以上结果,你能从中发现哪些有趣的结论?想看一看下面的问题吗?
请你用发现的结论来解决以下的问题:
已知数据a1,a2,a3,…,an的平均数为x,方差为y,标准差为z.则1234
①据a1+3,a2 + 3,a3 +3 ,…,an +3的平均数为     ,方差为     ,标准差为         .
②数据a1-3,a2 -3,a3 -3 ,…,an -3的平均数为       ,方差为        ,标准差为      .
③数据3a1,3a2 ,3a3 ,…,3an的平均数为      ,方差为  
     , 标准差为          .

1234

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38356.html

  • 【平面直角坐标系】平面直角坐标系

    1、教材分析: ⑴知识结构: 日常生活及其它学科需要一种确定平面内点的位置的方法 在数学上,可以类比数轴,引出的概念 完成了坐标平面内的点与有序实数对的一一对应,也把数与形统一了起来 ⑵重点、难点分析: 本节的重点是能正确画出直角坐标系,并能在直角坐标系中,根据坐标找出点,由点求出坐标 直角坐标系...

    发布于:2025-12-30

    详细阅读
  • 【函数】函数

    教学目标: 1、进一步理解的概念,能从简单的实际事例中,抽象出关系,列出解析式; 2、使学生分清常量与变量,并能确定自变量的取值范围 3、会求值,并体会自变量与值间的对应关系 4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的的自变量的取值范围的求法 5、通过的教学使学生体会...

    发布于:2025-12-30

    详细阅读
  • 【一元二次方程的应用】一元二次方程的应用

    第一课时 一、教学目标 1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。 2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。 3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。 二、重点·难点·疑点及解决办法 1.教学重点:会用列一元二次方...

    发布于:2025-12-30

    详细阅读
  • 过三点的圆的方程|过三点的圆

    第一课时 (一)学习活动设计: (二)学习载体设计: (1)实践:(a)过一点A是否可以作圆?如果能作,可以作几个? (b)过两个点A、B是否可以作圆?如果能作,可以作几个?……(发现新问题) (2)实验:应用电脑动画,使学生观察、发现新问题 (3)作图:已知:不在同一条直线上的三个已知点A、...

    发布于:2025-12-30

    详细阅读
  • 二次函数yax2bxc的图像和性质_二次函数y=ax2+bx+c 的图象

    教学目标: 1、使学生进一步理解二次函数的基本性质; 2、渗透解析几何,数形结合,函数等数学思想 培养学生发现问题解决问题,及逻辑思维的能力 3、使学生参与教学过程,通过主体的积极思维,体验感悟数学 逐步建立数学的观念,培养学生独立地获取知识的能力 教学重点:初步理解数形结合的数学思想 教学难点...

    发布于:2025-12-30

    详细阅读
  • 过三点的圆的方程|过三点的圆

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:①确定圆的定理 它是圆中的基础知识,是确定圆的理论依据;②不在同一直线上的三点作圆 “作圆”不仅体现在证明“确定圆的定理”的重要作用,也是解决实际问题中常用的方法;③反证法证明命题的一般步骤 反证法虽是选学内容,但它是证明数学命题的重要的基...

    发布于:2025-12-30

    详细阅读
  • 【一元二次方程的解法】一元二次方程的解法

    教学目标1. 初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如 的方程;2. 初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;3. 掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;4. 会用因式分解法解某些一元二次方程。5. 通过对一元二次...

    发布于:2025-12-30

    详细阅读
  • 两圆的公切线条数_两圆的公切线

    第一课时 (一) 教学目标: (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点: 两圆外公切线和两圆外公切线长学生理解的不透,容易...

    发布于:2025-12-30

    详细阅读
  • 与圆有关的比例线段_和圆有关的比例线段

    教学建议 1、教材分析 (1)知识结构 (2)重点、难点分析 重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明. 难点:正确地写出定理中的等积式.因为图形中的线段较多,...

    发布于:2025-12-30

    详细阅读
  • 一元二次方程的应用|一元二次方程的应用

    第一课时 一、教学目标 1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。 2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。 3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。 二、重点·难点·疑点及解决办法 1.教学重点:会用列一元二次...

    发布于:2025-12-30

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计