一元二次方程的应用导学案|一元二次方程应用导学设计

九年级数学教案 2016-02-26 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】

【学习目标】:
1、会分析实际问题中的等量关系,并能够用一元二次方程解决实际问题
2、经历用方程解决实际问题的过程,知道解应用题的一般步骤和关键所在
3、通过对实际问题的分析,进一步理解方程是刻画客观世界的有效模式,培养在生活中发现问题,解决问题的能力
【学习重点】:列一元二次方程解“动态”问题.
【学习难点】:理解“动态”中的变化过程,寻找正确的等量关系
一、课前预习
问题1、一根长4m的绳子。
(1)能否围成面积是1m2的矩形?
分析:如果设这根绳子围成的矩形的长是xm,那么矩形的宽是__________。
根据相等关系:
矩形的长×矩形的宽=矩形的面积,
可以列出方程求解。
解:
 
(2)能否围成面积是1.2 m2的矩形?
 
(3)这根铁丝围成的矩形中,面积最大的是多少?
 
二、典型例题
1、学校生物课外活动小组要在兔舍外面开辟一个面积为20平方米的长方形活动场地.它的一边靠墙,其余三边利用长13m的旧围栏.已知兔舍墙面宽6m,问围成长方形的长和宽各是多少?
2、如图,在矩形abcd中,ab=6 cm,bc=12 cm,点p从点a沿边ab向点b以1cm/s的速度移动;同时,点q从点b沿边bc向点c以2cm/s的速度移动,问几秒后△pbq的面积等于8 cm2?

 三、反思与小结
四、课堂检测
1、用长为100 cm的金属丝制作一个矩形框子。框子各边多长时,框子的面积是600 cm2?能制成面积是800 cm2的矩形框子吗?
 
 
 
 
2、如图,a、b、c、d为矩形的四个顶点,ab=16cm,bc=6cm,动点p、q分别从点a、c出发,点p以3cm/s的速度向点b移动,一直到达b为止;点q以2cm/s的速度向点d移动。经过多长时间p、q两点之间的距离是10cm?
 
 
 
 
 
 
 
 
3、如图,在rt△abc中,ab=bc=12cm,点d从点a开始沿边ab以2cm/s的速度向点b移动,移动过程中始终保持de∥bc,df∥ac,问点d出发几秒后四边形dfce的面积为20cm2?

 
 
 
 
五、课后作业
1、一根长22cm的铁丝。
(1)能否围成面积是30cm2的矩形?
(2)能否围成面积是32 cm2的矩形?并说明理由。
(3)这根铁丝围成的矩形中,面积最大的是多少?
 
 
 
 
 
 
2、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置o点的正北方向10海里外的a点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才能追上(点b为追上时的位置)?

 
 
 
 
 
3、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成中间隔有一道篱笆的长方形花圃。
(1)如果要围成面积为45平方米的花圃,ab的长是多少米?
(2)能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由。
 
 
 
 
 
 
 
 
4、如图所示,在△abc中,∠b=90°,ab=6cm, bc=8cm,点p从点a开始沿边ab向点b以1cm\s 的速度移动,点q从点b开始沿边bc向点c以2cm\s的速度移动.12
(1)如果p、q分别从点a、b同时出发,经过多长时间,△pbq面积等于8
(2)如果p、q分别从a、b同时出发,并且p到b后又继续在边bc上前进,q到c后又继续在边ca上前进,经过多长时间,△pcq面积等于12.6cm2

 
 
 
 
 
 
 
 
5、如图,在矩形abcd中,ab=6cm,bc=3cm。点p沿边ab从点a开始向点b以2cm/s的速度移动,点q沿边da从点d开始向点a以1cm/s的速度移动。如果p、q同时出发,用t(s)表示移动的时间(0≤t≤3)。那么,当t为何值时,△qap的面积等于2cm2?
解:
 
 
 
 

12

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38352.html

  • 正弦和余弦_正弦和余弦

    教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三...

    发布于:2025-12-31

    详细阅读
  • [圆的内接四边形有什么性质]圆的内接四边形

    1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...

    发布于:2025-12-31

    详细阅读
  • 【扇形所含弓形的面积】圆、扇形、弓形的面积

    (一) 教学目标 : 1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算; 2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力; 3、在扇形面积公式的推导和例题教学过程 中,渗透“从特殊到一般,再由一般到特殊”的辩证思想. 教学重点:扇形面积公式的导出及应用....

    发布于:2025-12-31

    详细阅读
  • 方差公式|方差

    教学设计示例1第一课时 素质教育目标 (一)知识教学点 使学生了解、标准差的意义,会计算一组数据的与标准差 (二)能力训练点 1.培养学生的计算能力 2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力 (三)德育渗透点 1.培养学生认真、耐心、细致的学习态度和学习习惯 2.渗透数学...

    发布于:2025-12-31

    详细阅读
  • 两圆的公切线条数|两圆的公切线

    第一课时 (一) 教学目标 : (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点 : 两圆外公切线和两圆外公切线长学生理解的不透,...

    发布于:2025-12-31

    详细阅读
  • 二次函数y=ax2的图象和性质|二次函数y=ax2的图象

    教学设计示例1 课题:二次函数 的图象 教学目标: 1、会用描点法画出二次函数 的图象; 2、根据图象观察、分析出二次函数 的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由特殊到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探...

    发布于:2025-12-31

    详细阅读
  • [圆的内接四边形有什么性质]圆的内接四边形

    1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...

    发布于:2025-12-31

    详细阅读
  • [相切约束的作图原理]相切在作图中的应用

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...

    发布于:2025-12-31

    详细阅读
  • 【圆周角定理】圆周角

    第一课时 (一) 教学目标 : (1)理解的概念,掌握的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:的概念和定理 教学难点 :定理的证明中由“一般到特殊”的数学思想方法和完全归纳...

    发布于:2025-12-31

    详细阅读
  • 可化为一元二次方程的分式方程的解法_可化为一元二次方程的分式方程

    一、教学目标 1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根 2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点 二、重点·难点·疑点及解决办法 1.教学重点:的解法. 2.教学难点...

    发布于:2025-12-31

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计