【正多边形的有关计算】正多边形的有关计算
【jiaoan.jxxyjl.com--九年级数学教案】
教学设计示例1
教学目标:
(1)会将正多边形的边长、半径、边心距和中心角、周长、面积等有关的计算问题转化为解直角三角形的问题;
(2)巩固学生解直角三角形的能力,培养学生正确迅速的运算能力;
(3)通过正多边形有关计算公式的推导,激发学生探索和创新.
教学重点:
把问题转化为解直角三角形的问题.
教学难点:
正确地将问题转化为解直角三角形的问题解决、综合运用几何知识准确计算.
教学活动设计:
(一)创设情境、观察、分析、归纳结论
1、情境一:给出图形.
问题1:正n边形内角的规律.
观察:在图形中,应用以有的知识(多边形内角和定理,多边形的每个内角都相等)得出新结论.
教师组织学生自主观察,学生回答.(正n边形的每个内角都等于 .)
2、情境二:给出图形.
问题2:每个图形的半径,分别将它们分割成什么样的三角形?它们有什么规律?
教师引导学生观察,学生回答.
观察:三角形的形状,三角形的个数.
归纳:正n边形的n条半径分正n边形为n个全等的等腰三角形.
3、情境三:给出图形.
问题3:作每个正多边形的边心距,又有什么规律?
观察、归纳:这些边心距又把这n个等腰三角形分成了个直角三角形,这些直角三角形也是全等的.
(二)定理、理解、应用:
1、定理: 正n边形的半径和边心距把正n边形分成2n 个全等的直角三角形.
2、理解:定理的实质是把正多边形的问题向直角三角形转化.
由于这些直角三角形的斜边都是正n边形的半径R,一条直角边是正n边形的边心距rn,另一条直角边是正n边形边长an的一半,一个锐角是正n边形中心角 的一半,即 ,所以,根据上面定理就可以把正n边形的有关计算归结为解直角三角形问题.
3、应用:
例1、已知正六边形ABCDEF的半径为R,求这个正六边形的边长、周长P6和面积S6.
教师引导学生分析解题思路:
n=6 =30°,又半径为R a6 、r6. P6、S6.
学生完成解题过程,并关注学生解直角三角形的能力.
解:作半径OA、OB;作OG⊥AB,垂足为G,得Rt△OGB.
∵∠GOB=,
∴a6 =2·Rsin30°=R,
∴P6=6·a6=6R,
∵r6=Rcos30°=,
∴ .
归纳:如果用Pn表示正n边形的周长,由例1可知,正n边形的面积S6=Pn rn.
4、研究:(应用例1的方法进一步研究)
问题:已知圆的半径为R,求它的内接正三角形、正方形的边长、边心距及面积.
学生以小组进行研究,并初步归纳:
; ; ; ;
; .
上述公式是运用解直角三角形的方法得到的.
通过上式六公式看出,只要给定两个条件,则正多边形就完全确定了.例如:(1)圆的半径或边数;(2)圆的半径和边心距;(3)边长及边心距,就可以确定正多边形的其它元素.
(三)小节
知识:定理、正三角形、正方形、正六边形的元素的计算问题.
思想:转化思想.
能力:解直角三角形的能力、计算能力;观察、分析、研究、归纳能力.
(四)作业
归纳正三角形、正方形、正六边形以及正n边形的有关计算公式.
第 1 2 页
本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/166681.html
-
正弦和余弦_正弦和余弦详细阅读
教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三...
-
[圆的内接四边形有什么性质]圆的内接四边形详细阅读
1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...
-
【扇形所含弓形的面积】圆、扇形、弓形的面积详细阅读
(一) 教学目标 : 1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算; 2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力; 3、在扇形面积公式的推导和例题教学过程 中,渗透“从特殊到一般,再由一般到特殊”的辩证思想. 教学重点:扇形面积公式的导出及应用....
-
方差公式|方差详细阅读
教学设计示例1第一课时 素质教育目标 (一)知识教学点 使学生了解、标准差的意义,会计算一组数据的与标准差 (二)能力训练点 1.培养学生的计算能力 2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力 (三)德育渗透点 1.培养学生认真、耐心、细致的学习态度和学习习惯 2.渗透数学...
-
两圆的公切线条数|两圆的公切线详细阅读
第一课时 (一) 教学目标 : (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点 : 两圆外公切线和两圆外公切线长学生理解的不透,...
-
二次函数y=ax2的图象和性质|二次函数y=ax2的图象详细阅读
教学设计示例1 课题:二次函数 的图象 教学目标: 1、会用描点法画出二次函数 的图象; 2、根据图象观察、分析出二次函数 的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由特殊到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探...
-
[圆的内接四边形有什么性质]圆的内接四边形详细阅读
1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...
-
[相切约束的作图原理]相切在作图中的应用详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...
-
【圆周角定理】圆周角详细阅读
第一课时 (一) 教学目标 : (1)理解的概念,掌握的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:的概念和定理 教学难点 :定理的证明中由“一般到特殊”的数学思想方法和完全归纳...
-
可化为一元二次方程的分式方程的解法_可化为一元二次方程的分式方程详细阅读
一、教学目标 1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根 2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点 二、重点·难点·疑点及解决办法 1.教学重点:的解法. 2.教学难点...