[下学期是几月到几月]下学期 5.2向量的加法与减法1

高一数学教案 2015-03-04 网络整理 晴天

【jiaoan.jxxyjl.com--高一数学教案】

(第一课时)

一.教学目标 

(1)掌握向量的加法的定义,会用向量加法的三角形法则和会用向量加法的平行四边形法则作两个向量的和向量;

(2)掌握向量加法的交换律和结合律,并会用它们进行计算;

(3)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;

(4)培养学生化归的数学思想.

二.教学重点:向量的加法的定义,向量加法的三角形法则和平行四边形法则,作两个向量的和向量;

教学难点 :对向量加法定义的理解.

三.教具:多媒体、实物投影仪

四.教学过程 

1.设置情境

请同学看这样一个问题:(投影)

(1)由于大陆和台湾没有直航,因此2003年春节探亲,要先从台北到香港,再从香港到上海,这两次位移之和时什么?

(2)如图(2),飞机从 到 ,再改变方向从 到 ,则两次位移的和是 ,应该是_____________.

(3)如图(3),船的速度是 ,水流速度是 则两个速度的和是 应该是___________.

生:(1)这人两次的位移的和是从台北到上海;(2)飞机两次位移的和是 ;(3)两个速度的和是 .

师:很好!两人向量的和仍是一个向量.本节课就来研究两个向量的和(板书课题:向量的加法).

2.探索研究

(1)向量的加法的定义:

已知向量 ,在平面内任取一点A,作 ,则向量 叫做向量 的和。记作: 即

零向量与任意向量 ,有

(2)两个向量的和向量的作法:

①三角形法则:两个向量“首尾”相接

注意:1°三角形法则对于两个向量共线时也适用;

2°两个向量的和向量仍是一个向量

例1.已知向量 ,求作 向量

作法:在平面内任取一点O,作 ,则

②平行四边形法则:

由同一点A为起点的两个已知向量 为邻边作平行四边形BCD,则以A为起点的向量 就是向量 的和。这种作两个向量和的方法叫做平行四边形法则

注意:平行四边形法则对于两个向量共线时不适用

3.向量和与数量和的区别:

①当向量 不共线时, 的方向与 不同向,且

②当向量 同向时, 的方向与 同向,且

当向量 反向时,若 ,则 的方向与 同向,且 ;若 ,则 的方向与 反向,且 ;4.向量的运算律:

①交换律:

证明:当向量 不共线时,如上图,作平行四边形ABCD,使 ,

则 ,

因为 ,

所以

当向量 共线时,若 与 同向,由向量加法的定义知:

与 同向,且

与 同向,且 ,所以

若 与 反向,不妨设 ,同样由向量加法的定义知:

与 同向,且

与 同向,且 ,所以

综上,

②结合律:

学生自己验证。

由于向量的加法满足交换律和结合律,对于多个向量的加法运算就可以按照任意的次序与任意的组合来进行了

例如:

例2.如图,一艘船从A点出发以 的速度向垂直于对岸的方向行驶,同时喝水的流速为 ,求船实际航行的速度的大小与方向。

解:设 表示船垂直于对岸的速度, 表示水流的速度,以AD,AB为邻边作平行四边形ABCD,则 就是船实际航行的速度

在 中, ,

所以

因为

答:船实际航行的速度的大小为 ,方向与水流速间的夹角为

4.演练反馈(投影)

(1)在平行四边形 中, , 则用 、 表示向量 的是(     )

A. +          B.           C.0          D. +

(2)若 为△ 内一点, ,则 是△ 的(     )

A.内心           B.外心        C.垂心          D.重心

(3)下列各等式或不等式中一定不能成立的个数(     )

① ②

③ ④

A.0          B.1          C.2            D.3

5.总结提炼

(1) 是一个向量,在三角形法则下:平移 向量,使 的起点与 的终点重合,则 就是以 的起点为起点, 的终点为终点的新向量.

(2)一组首尾相接的向量和: ,如图.

(3)对任意两个向量 、 ,任有 成立.

五.板书设计 

 

1.引例揭示课题

2.例1

   例2

演练反馈

总结提炼

本文来源:https://jiaoan.jxxyjl.com/gaoyishuxuejiaoan/27577.html

  • 【充分条件与必要条件】充分条件与必要条件

    教学目标 (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学建议(一)教材分析1.知识结构 首先给出推断符号“ ”,并引出的意义,在此基础上讲述了充...

    发布于:2025-12-08

    详细阅读
  • 函数奇偶性知识点归纳|函数单调性与奇偶性

    教学目标 1 了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法 (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念 (2)能从数和形两个角度认识单调性和奇偶性 (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶...

    发布于:2025-12-08

    详细阅读
  • [数列]数列

    教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一...

    发布于:2025-12-08

    详细阅读
  • 一元二次不等式的解法_一元二次不等式的解法

    教学目标 (1)掌握; (2)知道一元二次不等式可以转化为一元一次不等式组; (3)了解简单的分式不等式的解法; (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系; (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式; (6)通过利...

    发布于:2025-12-08

    详细阅读
  • 等比数列的前n项和公式_等比数列的前n项和

    教学目标 1 掌握等比数列前 项和公式,并能运用公式解决简单的问题 (1)理解公式的推导过程,体会转化的思想; (2)用方程的思想认识等比数列前 项和公式,利用公式知三求一;与通项公式结合知三求二; 2 通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想 3 通过公式推导...

    发布于:2025-12-08

    详细阅读
  • 等差数列的前n项和公式_等差数列的前n项和

    教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已...

    发布于:2025-12-08

    详细阅读
  • 【数列】数列

    教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一个的前...

    发布于:2025-12-08

    详细阅读
  • 等差数列求和公式_等差数列

    教学目标 1 理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题 (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念; (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项; (3)能通过通项公式与图像认识的性质,能用...

    发布于:2025-12-08

    详细阅读
  • 等差数列的前n项和公式_等差数列的前n项和

    教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及...

    发布于:2025-12-08

    详细阅读
  • [交集]交集、并集

    教学目标 : (1)理解交集与并集的概念; (2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的的求法; (5)通过对概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程; (6)通过对集...

    发布于:2025-12-08

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计