[方程的根与函数的零点知识点]3.1.1方程的根与函数的零点公开课教案

高一数学教案 2015-02-26 网络整理 晴天

【jiaoan.jxxyjl.com--高一数学教案】

教学目标:

1、          能够结合二次函数的图像判断一元二次方程根的存在性及根的个数。

2、          理解函数的零点与方程的联系。

3、          渗透由特殊到一般的认识规律,提升学生的抽象和概括能力。

教学重点、难点:

1、          重点:理解函数的零点与方程根的联系,使学生遇到一元二次方程根的问题时能顺利联想函数的思想和方法。

2、          难点:函数零点存在的条件。

教学过程:

1、          问题引入

探究一元二次方程与相应二次函数的关系。

出示表格,引导学生填写表格,并分析填出的表格,从二次方程的根和二次函数的图像与x轴的交点的坐标,探究一元二次方程与相应二次函数的关系。

一元二次方程
 方程的根
 二次函数
 图像与x轴的交点
 
x2-2x-3=0
 x1=-1,x2=3
 y=x2-2x-3
 (-1,0),(3,0)
 
x2-2x+1=0
 x1= x2=1
 y=x2-2x+1
 (1,0)
 
x2-2x+3=0
 无实数根
 y=x2-2x+3
 无交点
 

 (图1-1)函数y=x2-2x-3的图像

 
(图1-2)函数y=x2-2x+1的图像

 (图1-3)函数y=x2-2x+3的图像

归纳:

(1)                   如果一元二次方程没有实数根,相应的二次函数图像与x轴没有交点;

(2)                   如果一元二次方程有实数根,相应的二次函数图像与x轴有交点。

反之,二次函数图像与x轴没有交点,相应的一元二次方程没有实数根;

二次函数图像与x轴有交点,则交点的横坐标就是相应一元二次方程的实数根。

2、          函数的零点

(1) 概念

对于函数y=f(x)(x∈d),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈d)的零点。

(2) 意义

方程f(x)=0有实数根

                    函数y=f(x)的图像与x轴有交点

           函数y=f(x)有零点

(3) 求函数的零点

①  代数法:求方程f(x)=0的实数根

②  几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图像联系起来,并利用函数的性质找出零点。

3、          函数零点的存在性

(1) 二次函数的零点

△=b2-4ac
 ax2+bx+c=0的实数根
 y=ax2+bx+c的零点数
 
△﹥0
 有两个不等的实数根x1、x2
 两个零点x1、 x2
 
△=0
 有两个相等的实数根x1= x2
 一个零点x1(或x2)12
 
△﹤0
 没有实数根
 没有零点
 
(图2-1)方程ax2+bx+c=0的判别式△﹥0时,函数y= ax2 +bx+c(a≠0)的图像

(图2-2)方程ax2+bx+c=0的判别式△=0时,函数y= ax2+bx+c(a≠0)的图像

(图2-3)方程ax2+bx+c=0的判别式△﹤0时,函数y= ax2 +bx+c(a≠0)的图像

 

(2) 探究发现

          问题1:二次函数y=x2-2x-3在区间[-2,1]上有零点。试计算f(-2)与f(1)的乘积有什么特点?

          解:f(-2)=(-2)2-2*(-2)-3=4+4-3=5

              f(1)=12 -2*1-3=1-2-3=-4

               f(2)* f(1)=-4*5=-20﹤0

          问题2:在区间[2,4]呢?

          解:f(2)=(2)2-2*2-3=-3

              f(4)=42-2*4-3=5

              f(4)*f(2)=(-3)* 5=-15﹤0                                                                                                                   

          归纳:

f(2)* f(1)﹤0,函数y=x2-2x-3在[-2,1]内有零点x=-1;f(2)* f(4)﹤0,函数y=x2-2x-3在[2,4]内有零点x=3,它们分别是方程y=x2-2x-3的两个根。

结论:

如果函数 在区间 上的图像是连续不断的一条曲线并且有 ,那么,函数 在区间 内有零点,即存在 ,使得 ,这个 也就是方程 的根。

①   图像在 上的图像是连续不断的

②  

③   函数 在区间 内至少有一个零点

4、          习题演练

利用函数图像判断下列二次函数有几个零点

①   y=-x2+3x+5 , ②y=2x(x-2)+3

解:①令f(x)=-x2+3x+5,

 做出函数f(x)的图像,如下

(图4-1)

它与x轴有两个交点,所以方程-x2+3x+5=0有两个不相等的实数根,则函数y=-x2+3x+5有两个零点。

②y=2x(x-2)+3可化为

做出函数f(x)的图像,如下:

 (图4-2)

它与x轴没有交点,所以方程2x(x-2)=-3无实数根,则函数y=2x(x-2)+3没有零点。

12

本文来源:https://jiaoan.jxxyjl.com/gaoyishuxuejiaoan/27394.html

  • 【充分条件与必要条件】充分条件与必要条件

    教学目标 (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学建议(一)教材分析1.知识结构 首先给出推断符号“ ”,并引出的意义,在此基础上讲述了充...

    发布于:2025-12-08

    详细阅读
  • 函数奇偶性知识点归纳|函数单调性与奇偶性

    教学目标 1 了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法 (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念 (2)能从数和形两个角度认识单调性和奇偶性 (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶...

    发布于:2025-12-08

    详细阅读
  • [数列]数列

    教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一...

    发布于:2025-12-08

    详细阅读
  • 一元二次不等式的解法_一元二次不等式的解法

    教学目标 (1)掌握; (2)知道一元二次不等式可以转化为一元一次不等式组; (3)了解简单的分式不等式的解法; (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系; (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式; (6)通过利...

    发布于:2025-12-08

    详细阅读
  • 等比数列的前n项和公式_等比数列的前n项和

    教学目标 1 掌握等比数列前 项和公式,并能运用公式解决简单的问题 (1)理解公式的推导过程,体会转化的思想; (2)用方程的思想认识等比数列前 项和公式,利用公式知三求一;与通项公式结合知三求二; 2 通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想 3 通过公式推导...

    发布于:2025-12-08

    详细阅读
  • 等差数列的前n项和公式_等差数列的前n项和

    教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已...

    发布于:2025-12-08

    详细阅读
  • 【数列】数列

    教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一个的前...

    发布于:2025-12-08

    详细阅读
  • 等差数列求和公式_等差数列

    教学目标 1 理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题 (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念; (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项; (3)能通过通项公式与图像认识的性质,能用...

    发布于:2025-12-08

    详细阅读
  • 等差数列的前n项和公式_等差数列的前n项和

    教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及...

    发布于:2025-12-08

    详细阅读
  • [交集]交集、并集

    教学目标 : (1)理解交集与并集的概念; (2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的的求法; (5)通过对概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程; (6)通过对集...

    发布于:2025-12-08

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计