[方程的根与函数的零点知识点]3.1.1方程的根与函数的零点公开课教案
【jiaoan.jxxyjl.com--高一数学教案】
教学目标:
1、 能够结合二次函数的图像判断一元二次方程根的存在性及根的个数。
2、 理解函数的零点与方程的联系。
3、 渗透由特殊到一般的认识规律,提升学生的抽象和概括能力。
教学重点、难点:
1、 重点:理解函数的零点与方程根的联系,使学生遇到一元二次方程根的问题时能顺利联想函数的思想和方法。
2、 难点:函数零点存在的条件。
教学过程:
1、 问题引入
探究一元二次方程与相应二次函数的关系。
出示表格,引导学生填写表格,并分析填出的表格,从二次方程的根和二次函数的图像与x轴的交点的坐标,探究一元二次方程与相应二次函数的关系。
一元二次方程
方程的根
二次函数
图像与x轴的交点
x2-2x-3=0
x1=-1,x2=3
y=x2-2x-3
(-1,0),(3,0)
x2-2x+1=0
x1= x2=1
y=x2-2x+1
(1,0)
x2-2x+3=0
无实数根
y=x2-2x+3
无交点
(图1-1)函数y=x2-2x-3的图像
(图1-2)函数y=x2-2x+1的图像
(图1-3)函数y=x2-2x+3的图像
归纳:
(1) 如果一元二次方程没有实数根,相应的二次函数图像与x轴没有交点;
(2) 如果一元二次方程有实数根,相应的二次函数图像与x轴有交点。
反之,二次函数图像与x轴没有交点,相应的一元二次方程没有实数根;
二次函数图像与x轴有交点,则交点的横坐标就是相应一元二次方程的实数根。
2、 函数的零点
(1) 概念
对于函数y=f(x)(x∈d),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈d)的零点。
(2) 意义
方程f(x)=0有实数根
函数y=f(x)的图像与x轴有交点
函数y=f(x)有零点
(3) 求函数的零点
① 代数法:求方程f(x)=0的实数根
② 几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图像联系起来,并利用函数的性质找出零点。
3、 函数零点的存在性
(1) 二次函数的零点
△=b2-4ac
ax2+bx+c=0的实数根
y=ax2+bx+c的零点数
△﹥0
有两个不等的实数根x1、x2
两个零点x1、 x2
△=0
有两个相等的实数根x1= x2
一个零点x1(或x2)12
△﹤0
没有实数根
没有零点
(图2-1)方程ax2+bx+c=0的判别式△﹥0时,函数y= ax2 +bx+c(a≠0)的图像
(图2-2)方程ax2+bx+c=0的判别式△=0时,函数y= ax2+bx+c(a≠0)的图像
(图2-3)方程ax2+bx+c=0的判别式△﹤0时,函数y= ax2 +bx+c(a≠0)的图像
(2) 探究发现
问题1:二次函数y=x2-2x-3在区间[-2,1]上有零点。试计算f(-2)与f(1)的乘积有什么特点?
解:f(-2)=(-2)2-2*(-2)-3=4+4-3=5
f(1)=12 -2*1-3=1-2-3=-4
f(2)* f(1)=-4*5=-20﹤0
问题2:在区间[2,4]呢?
解:f(2)=(2)2-2*2-3=-3
f(4)=42-2*4-3=5
f(4)*f(2)=(-3)* 5=-15﹤0
归纳:
f(2)* f(1)﹤0,函数y=x2-2x-3在[-2,1]内有零点x=-1;f(2)* f(4)﹤0,函数y=x2-2x-3在[2,4]内有零点x=3,它们分别是方程y=x2-2x-3的两个根。
结论:
如果函数 在区间 上的图像是连续不断的一条曲线并且有 ,那么,函数 在区间 内有零点,即存在 ,使得 ,这个 也就是方程 的根。
① 图像在 上的图像是连续不断的
②
③ 函数 在区间 内至少有一个零点
4、 习题演练
利用函数图像判断下列二次函数有几个零点
① y=-x2+3x+5 , ②y=2x(x-2)+3
解:①令f(x)=-x2+3x+5,
做出函数f(x)的图像,如下
(图4-1)
它与x轴有两个交点,所以方程-x2+3x+5=0有两个不相等的实数根,则函数y=-x2+3x+5有两个零点。
②y=2x(x-2)+3可化为
做出函数f(x)的图像,如下:
(图4-2)
它与x轴没有交点,所以方程2x(x-2)=-3无实数根,则函数y=2x(x-2)+3没有零点。
12-
【充分条件与必要条件】充分条件与必要条件详细阅读
教学目标 (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学建议(一)教材分析1.知识结构 首先给出推断符号“ ”,并引出的意义,在此基础上讲述了充...
-
函数奇偶性知识点归纳|函数单调性与奇偶性详细阅读
教学目标 1 了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法 (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念 (2)能从数和形两个角度认识单调性和奇偶性 (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶...
-
[数列]数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一...
-
一元二次不等式的解法_一元二次不等式的解法详细阅读
教学目标 (1)掌握; (2)知道一元二次不等式可以转化为一元一次不等式组; (3)了解简单的分式不等式的解法; (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系; (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式; (6)通过利...
-
等比数列的前n项和公式_等比数列的前n项和详细阅读
教学目标 1 掌握等比数列前 项和公式,并能运用公式解决简单的问题 (1)理解公式的推导过程,体会转化的思想; (2)用方程的思想认识等比数列前 项和公式,利用公式知三求一;与通项公式结合知三求二; 2 通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想 3 通过公式推导...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已...
-
【数列】数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一个的前...
-
等差数列求和公式_等差数列详细阅读
教学目标 1 理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题 (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念; (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项; (3)能通过通项公式与图像认识的性质,能用...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及...
-
[交集]交集、并集详细阅读
教学目标 : (1)理解交集与并集的概念; (2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的的求法; (5)通过对概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程; (6)通过对集...