向量的加法运算及其几何意义|向量的加法运算及其几何意义

高一数学教案 2015-02-25 网络整理 晴天

【jiaoan.jxxyjl.com--高一数学教案】

教学目标:
1、 掌握向量的加法运算,并理解其几何意义;
2、 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;
3、 通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;
教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.
教学难点:理解向量加法的定义.
学   法:
数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.
教   具:多媒体或实物投影仪,尺规
授课类型:新授课
教学思路:
一、设置情景:
1、 复习:向量的定义以及有关概念
强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置
2、 情景设置:
(1)某人从a到b,再从b按原方向到c,
   则两次的位移和:
(2)若上题改为从a到b,再从b按反方向到c,
   则两次的位移和:
(3)某车从a到b,再从b改变方向到c,
   则两次的位移和:
(4)船速为 ,水速为 ,则两速度和:
二、探索研究:
1、向量的加法:求两个向量和的运算,叫做向量的加法.
2、三角形法则(“首尾相接,首尾连”)
如图,已知向量a、b.在平面内任取一点 ,作 =a, =b,则向量 叫做a与b的和,记作a+b,即 a+b ,规定:      a + 0-= 0 + a

探究:(1)两相向量的和仍是一个向量;
(2)当向量 与 不共线时, + 的方向不同向,且| + |<| |+| |;
(3)当 与 同向时,则 + 、 、 同向,且| + |=| |+| |,当 与 反向时,若| |>| |,则 + 的方向与 相同,且| + |=| |-| |;若| |<| |,则 + 的方向与 相同,且| +b|=| |-| |.
(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n个向量连加
3.例一、已知向量 、 ,求作向量 +
   作法:在平面内取一点,作   ,则 .

4.加法的交换律和平行四边形法则
问题:上题中 + 的结果与 + 是否相同?    验证结果相同
从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)
             2)向量加法的交换律: + = +
5.向量加法的结合律:( + ) + = + ( + )
证:如图:使 ,  , 
则( + ) + = , + ( + ) =
∴( + ) + = + ( + )
从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.
三、应用举例:
例二(p94—95)略
练习:p95
四、小结 
1、向量加法的几何意义;12
2、交换律和结合律;
3、注意:| + | ≤ | | + | |,当且仅当方向相同时取等号.
五、课后作业:
p103第2、3题
六、板书设计(略)
七、备用习题
1、一艘船从a点出发以 的速度向垂直于对岸的方向行驶,船的实际航行的速度的大小为 ,求水流的速度.
2、一艘船距对岸 ,以 的速度向垂直于对岸的方向行驶,到达对岸时,船的实际航程为8km,求河水的流速.
3、一艘船从a点出发以 的速度向垂直于对岸的方向行驶,同时河水的流速为 ,船的实际航行的速度的大小为 ,方向与水流间的夹角是 ,求 和 .
4、一艘船以5km/h的速度在行驶,同时河水的流速为2km/h,则船的实际航行速度大小最大是 km/h,最小是 km/h
5、已知两个力f1,f2的夹角是直角,且已知它们的合力f与f1的夹角是60 ,|f|=10n求f1和f2的大小.
6、用向量加法证明:两条对角线互相平分的四边形是平行四边形

12

本文来源:https://jiaoan.jxxyjl.com/gaoyishuxuejiaoan/27358.html

  • 【充分条件与必要条件】充分条件与必要条件

    教学目标 (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学建议(一)教材分析1.知识结构 首先给出推断符号“ ”,并引出的意义,在此基础上讲述了充...

    发布于:2025-12-08

    详细阅读
  • 函数奇偶性知识点归纳|函数单调性与奇偶性

    教学目标 1 了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法 (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念 (2)能从数和形两个角度认识单调性和奇偶性 (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶...

    发布于:2025-12-08

    详细阅读
  • [数列]数列

    教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一...

    发布于:2025-12-08

    详细阅读
  • 一元二次不等式的解法_一元二次不等式的解法

    教学目标 (1)掌握; (2)知道一元二次不等式可以转化为一元一次不等式组; (3)了解简单的分式不等式的解法; (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系; (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式; (6)通过利...

    发布于:2025-12-08

    详细阅读
  • 等比数列的前n项和公式_等比数列的前n项和

    教学目标 1 掌握等比数列前 项和公式,并能运用公式解决简单的问题 (1)理解公式的推导过程,体会转化的思想; (2)用方程的思想认识等比数列前 项和公式,利用公式知三求一;与通项公式结合知三求二; 2 通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想 3 通过公式推导...

    发布于:2025-12-08

    详细阅读
  • 等差数列的前n项和公式_等差数列的前n项和

    教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已...

    发布于:2025-12-08

    详细阅读
  • 【数列】数列

    教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一个的前...

    发布于:2025-12-08

    详细阅读
  • 等差数列求和公式_等差数列

    教学目标 1 理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题 (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念; (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项; (3)能通过通项公式与图像认识的性质,能用...

    发布于:2025-12-08

    详细阅读
  • 等差数列的前n项和公式_等差数列的前n项和

    教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及...

    发布于:2025-12-08

    详细阅读
  • [交集]交集、并集

    教学目标 : (1)理解交集与并集的概念; (2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的的求法; (5)通过对概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程; (6)通过对集...

    发布于:2025-12-08

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计