二次函数y二ax2的图象与性质教学视频|第五册二次函数y=ax2的图象(一)
【jiaoan.jxxyjl.com--九年级数学教案】
一、教学目的
1.使学生初步理解二次函数的概念。
2.使学生会用描点法画二次函数y=ax2的图象。
3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。
二、教学重点、难点
重点:对二次函数概念的初步理解。
难点:会用描点法画二次函数y=ax2的图象。
三、教学过程
复习提问
1.在下列函数中,哪些是一次函数?哪些是正比例函数?
(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2 - 2。
2.什么是一无二次方程?
3.怎样用找点法画函数的图象?
新课
1.由具体问题引出二次函数的定义。
(1)已知圆的面积是Scm2,圆的半径是Rcm,写出空上圆的面积S与半径R之间的函数关系式。
(2)已知一个矩形的周长是60m,一边长是Lm,写出这个矩形的面积S(m2)与这个矩形的一边长L之间的函数关系式。
(3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?
解:(1)函数解析式是S=πR2;
(2)函数析式是S=30L—L2;
(3)函数解析式是y=50(1+x)2,即
y=50x2+100x+50。
由以上三例启发学生归纳出:
(1)函数解析式均为整式;
(2)处变量的最高次数是2。
我们说三个式子都表示的是二次函数。
一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。
2.画二次函数y=x2的图象。
按照描点法分三步画图:
(1)列表 ∵ x可取任意实数,∴ 以0为中心选取x值,以1为间距取值,且取整数值,便于计算,又x取相反数时,相应的y值相同;
(2)描点 按照表中所列出的函数对应值,在平面直角坐标系中描出相应的7个点;
(3)边线 用平滑曲线顺次连接各点,即得所求y=x2的图象。
注意两点:
(1)由于我们只描出了7个点,但自矿业量取值范围是实数,故我们只画出了实际图象的一部分,即画出了在原点附近、自变量在-3到3这个区间的一部分。而图象在x>3或x<-3的区间是无限延伸的。
(2)所画的图象是近似的。
3.在原点附近较精确地研究二次函数y=x2的图象形状到底如何?——我们 –1与1之间每隔0.2的间距取x值表和图13-14。按课本P118内容讲解。
4.引入抛物线的概念。
关于抛物线的顶点应从两方面分析:一是从图象上看,y=x2的图象的顶点是最低点;一是从解析式y=x2看,当x=0时,y=x2取得最小值0,故抛物线y=x2的顶点是(0,0)。
小结
1.二次函数的定义。
(1)函数解析式关于自变量是整式;(2)函数自变量的最高次数是2。
2.二次函数y=x2的图象。
(1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。
补充例题
下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a,b,c?
(1)y=2-3x2; (2)y=x (x-4);
(3)y=1/2x2-3x-1; (4)y=1/4x2+3x-8;
(5)y=7x(1-x)+4x2; (6)y=(x-6)(6+x)。
作业 :P122中A组1,2,3。
四、教学注意问题
1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。
2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考:
(1)y=x2的图象的图象有什么特点。(答:具有对称性。)
(2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。)
本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38609.html
-
切线长定理_切线长定理详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点. 难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数...
-
一元二次方程根的判别式应用|一元二次方程的根的判别式(一)详细阅读
1 知识结构: 2 重点、难点分析 (1)本节的重点是会用判别式判定根的情况 一元二次方程的根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也可以利用它进一步学习函数的有关内容,所以,它是本节课的重点 (2)本节的难点是一元二次方程根的三种情况的推导...
-
[垂直于弦的直径教案]垂直于弦的直径详细阅读
第一课时 垂直于弦的直径(一) 教学目标: (1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证实; (2)进一步培养学生观察问题、分析问题和解决问题的能力; (3)通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱 教学重点、难点:...
-
圆和圆的位置关系|圆和圆的位置关系详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:两圆的位置关系和两圆相交、相切的性质.它们是本节的主要内容,是圆的重要概念性知识,也是今后研究圆与圆问题的基础知识. 难点:两圆位置关系的判定与相交两圆的连心线垂直平分两圆的公共弦的性质的运用.由于两圆位置关系有5种类型,特别是相离有外离和...
-
相切约束的作图原理|相切在作图中的应用详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...
-
二次函数的图像和性质|一次函数的图象和性质详细阅读
教学目标 : 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化...
-
【一元二次方程的求根公式】一元二次方程详细阅读
教学目标 1. 了解整式方程和的概念;2. 知道的一般形式,会把化成一般形式。3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。教学重点和难点: 重点:的概念和它的一般形式。 难点:对的一般形式的正确理解及其各项系数的确定。教学建议...
-
反比例函数及其图象的教学设计_反比例函数及其图象详细阅读
教学设计示例1 教学目标 : 1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式; 2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质; 3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想; 4、体会数学从实践中来又到实际中去的研究、应用过程; 5、培养学生的观察能力...
-
二次函数的图像和性质_一次函数的图象和性质详细阅读
教学目标: 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化的...
-
一次函数|一次函数详细阅读
【目的要求】1、使学生初步理解与正比例函数的概念。2、使学生能够根据实际问题中的条件,确定与正比例函数的解析式。【教学重点、难点】以及正比例函数的解析式【教学过程 】一、复习提问: 1、什么是函数? 2、函数有哪几种表示方法?3、举出几个函数的例子。二、新课讲解:可以选用提问时学生举出的...