二次函数y二ax2的图象与性质教学视频|第五册二次函数y=ax2的图象(一)

九年级数学教案 2016-03-06 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】

一、教学目的

1.使学生初步理解二次函数的概念。

2.使学生会用描点法画二次函数y=ax2的图象。

3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。

 

二、教学重点、难点

重点:对二次函数概念的初步理解。

难点:会用描点法画二次函数y=ax2的图象。

 

三、教学过程 

复习提问

1.在下列函数中,哪些是一次函数?哪些是正比例函数?

1y=x/4;(2y=4/x;(3y=2x-5;(4y=x2 - 2

2.什么是一无二次方程?

3.怎样用找点法画函数的图象?

 

新课

1.由具体问题引出二次函数的定义。

1)已知圆的面积是Scm2,圆的半径是Rcm,写出空上圆的面积S与半径R之间的函数关系式。

2)已知一个矩形的周长是60m,一边长是Lm,写出这个矩形的面积Sm2)与这个矩形的一边长L之间的函数关系式。

3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?

解:(1)函数解析式是S=πR2

2)函数析式是S=30LL2

3)函数解析式是y=501+x2,即

         y=50x2+100x+50

由以上三例启发学生归纳出:

1)函数解析式均为整式;

2)处变量的最高次数是2

我们说三个式子都表示的是二次函数。

一般地,如果y=ax2+bx+cabc没有限制而a0),那么y叫做x的二次函数,请注意这里bc没有限制,而a0

2.画二次函数y=x2的图象。

按照描点法分三步画图:

1)列表   x可取任意实数,∴ 0为中心选取x值,以1为间距取值,且取整数值,便于计算,又x取相反数时,相应的y值相同;

2)描点  按照表中所列出的函数对应值,在平面直角坐标系中描出相应的7个点;

3)边线  用平滑曲线顺次连接各点,即得所求y=x2的图象。

注意两点:

1)由于我们只描出了7个点,但自矿业量取值范围是实数,故我们只画出了实际图象的一部分,即画出了在原点附近、自变量在-33这个区间的一部分。而图象在x>3x<-3的区间是无限延伸的。

2)所画的图象是近似的。

3.在原点附近较精确地研究二次函数y=x2的图象形状到底如何?——我们 –11之间每隔0.2的间距取x值表和图13-14。按课本P118内容讲解。

4.引入抛物线的概念。

关于抛物线的顶点应从两方面分析:一是从图象上看,y=x2的图象的顶点是最低点;一是从解析式y=x2看,当x=0时,y=x2取得最小值0,故抛物线y=x2的顶点是(00)。

 

小结

1.二次函数的定义。

1)函数解析式关于自变量是整式;(2)函数自变量的最高次数是2

2.二次函数y=x2的图象。

1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。

 

补充例题

下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出abc

1y=2-3x2                    2y=x (x-4)

3y=1/2x2-3x-1                4y=1/4x2+3x-8

5y=7x1-x+4x2            6y=x-6)(6+x)。

作业 :P122A123

 

四、教学注意问题

1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。

2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考:

1y=x2的图象的图象有什么特点。(答:具有对称性。)

2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。)

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38609.html

  • 正弦和余弦_正弦和余弦

    教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三...

    发布于:2025-12-31

    详细阅读
  • [圆的内接四边形有什么性质]圆的内接四边形

    1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...

    发布于:2025-12-31

    详细阅读
  • 【扇形所含弓形的面积】圆、扇形、弓形的面积

    (一) 教学目标 : 1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算; 2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力; 3、在扇形面积公式的推导和例题教学过程 中,渗透“从特殊到一般,再由一般到特殊”的辩证思想. 教学重点:扇形面积公式的导出及应用....

    发布于:2025-12-31

    详细阅读
  • 方差公式|方差

    教学设计示例1第一课时 素质教育目标 (一)知识教学点 使学生了解、标准差的意义,会计算一组数据的与标准差 (二)能力训练点 1.培养学生的计算能力 2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力 (三)德育渗透点 1.培养学生认真、耐心、细致的学习态度和学习习惯 2.渗透数学...

    发布于:2025-12-31

    详细阅读
  • 两圆的公切线条数|两圆的公切线

    第一课时 (一) 教学目标 : (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点 : 两圆外公切线和两圆外公切线长学生理解的不透,...

    发布于:2025-12-31

    详细阅读
  • 二次函数y=ax2的图象和性质|二次函数y=ax2的图象

    教学设计示例1 课题:二次函数 的图象 教学目标: 1、会用描点法画出二次函数 的图象; 2、根据图象观察、分析出二次函数 的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由特殊到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探...

    发布于:2025-12-31

    详细阅读
  • [圆的内接四边形有什么性质]圆的内接四边形

    1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...

    发布于:2025-12-31

    详细阅读
  • [相切约束的作图原理]相切在作图中的应用

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...

    发布于:2025-12-31

    详细阅读
  • 【圆周角定理】圆周角

    第一课时 (一) 教学目标 : (1)理解的概念,掌握的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:的概念和定理 教学难点 :定理的证明中由“一般到特殊”的数学思想方法和完全归纳...

    发布于:2025-12-31

    详细阅读
  • 可化为一元二次方程的分式方程的解法_可化为一元二次方程的分式方程

    一、教学目标 1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根 2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点 二、重点·难点·疑点及解决办法 1.教学重点:的解法. 2.教学难点...

    发布于:2025-12-31

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计