第六册的_第六册正切和余切

九年级数学教案 2016-03-05 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】

一、            教学目标 :

1、理解锐角的正切、余切概念,能正确使用锐角的正切、余切的符号语言。

2、通过探究活动,培养学生观察、分析问题,归纳、总结知识的能力;通过题目的变式,培养用转化思想解决数学问题的能力;通过不同题型的训练,提高学生的通试能力;通过探索题的教学,培养学生的创新意识。

3、通过不同题型的训练,培养学生的数学学习素养,通过学习形式的变换,孕育学生的品质。

4、培养学生间良好的互动协作精神和对知识强烈的求知欲。

二、            教学设计的指导思想:

贯彻“教为主导、学为主体、练为主线”的原则,引导学生自始至终地参与学习的全过程,让学生在探索过程中学得愉快、扎实、灵活,学会学习,发展能力。

三、            重、难点及教学策略:

重点:锐角的正切、余切概念,探究能力的培养

难点:理解一个锐角确定的直角三角形的两边的比是一个确定的值。

策略:突出重点、突破难点。

四、            教学准备:

U盘,电脑,一副三角板,一块三角形模型,网格纸

五、            教学环节的流程简图:

     创设问题情境 ——→ 问题的研究  ——→ 讲授新课 ——→ 归纳小结及布置作业 

六、            教学过程 :

一)            创设问题情境:

1、引领练习:

①    在Rt△ABC中,∠C=90°,当∠A=45°时,

随着三角形的边长的放大或缩小时,上面的比值是否发生变化?

②    在Rt△ABC中,∠C=90°,当∠A=30°时,

随着三角形的边长的放大或缩小时,上面的比值是否发生变化?

 

2、提出问题:

在Rt△ABC中,∠C=90°,一般情况下,

当∠A的大小确定,三角形的边长的放大或缩小时,上面的比值是否发生变化?

二)            问题的研究:

1、几何画板动画演示:

2、运用定理证明:

得出结论:在Rt△ABC中,∠C=90°,一般情况下,

当∠A的大小确定,三角形的边长的放大或缩小时,上面的比值不变。

三)            讲授新课:

课题: 29.1  正切和余切

1、基本概念:

①    在Rt△ABC中,∠C=90°,

 正切:tgA= =

(tangent) (tanA)

            (tg∠BAC)

     余切:ctgA= =

           (cotA)

②    tgA=

③     若∠A+∠B=90°,则tgA=ctgB  ,ctgA=tgB   

2、例题讲解:

例1:在Rt△ABC中,∠C=90°,AC=12,BC=7,

①求tgA的值.

②求tgB的值.

③过C点作CD⊥AB于D,求tg∠DCA的值.

3、巩固练习:

①    选择题:

1.在Rt△ABC中, ∠C=90°,若各边的长都扩大3倍,则∠B的正切值(    )

       A.扩大3倍    B.缩小为原来的     C.没有变化     D.扩大9倍

2.在Rt△ABC中, ∠C=90°, ∠A和∠B的对边是a,b,则与 的值相等的是(     )

      A.tgA    B.tgB     C.ctgA     D.ctgB

②    解答题:

如图,△ABC是直角三角形,∠C=90°,D、E在BC上,AC=4,

BD=5,DE=2,EC=3,∠ABC=α,

∠ADC=β,∠AEC=γ,

求: ①tgα。

②ctgβ。

③tgγ。

4、探索题:能否在网格纸中画一个Rt△,使其中一个锐角的正切值为 。

四)            小结:(略)

五)            思考题:已知:在Rt△ABC中, ∠C=90°,tgA、tgB是方程 的两根,求m.。

六)            布置作业 :

七、            板书设计 :(略)

八、            教学随笔:(略)

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38588.html

  • 正弦和余弦_正弦和余弦

    教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三...

    发布于:2025-12-31

    详细阅读
  • [圆的内接四边形有什么性质]圆的内接四边形

    1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...

    发布于:2025-12-31

    详细阅读
  • 【扇形所含弓形的面积】圆、扇形、弓形的面积

    (一) 教学目标 : 1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算; 2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力; 3、在扇形面积公式的推导和例题教学过程 中,渗透“从特殊到一般,再由一般到特殊”的辩证思想. 教学重点:扇形面积公式的导出及应用....

    发布于:2025-12-31

    详细阅读
  • 方差公式|方差

    教学设计示例1第一课时 素质教育目标 (一)知识教学点 使学生了解、标准差的意义,会计算一组数据的与标准差 (二)能力训练点 1.培养学生的计算能力 2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力 (三)德育渗透点 1.培养学生认真、耐心、细致的学习态度和学习习惯 2.渗透数学...

    发布于:2025-12-31

    详细阅读
  • 两圆的公切线条数|两圆的公切线

    第一课时 (一) 教学目标 : (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点 : 两圆外公切线和两圆外公切线长学生理解的不透,...

    发布于:2025-12-31

    详细阅读
  • 二次函数y=ax2的图象和性质|二次函数y=ax2的图象

    教学设计示例1 课题:二次函数 的图象 教学目标: 1、会用描点法画出二次函数 的图象; 2、根据图象观察、分析出二次函数 的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由特殊到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探...

    发布于:2025-12-31

    详细阅读
  • [圆的内接四边形有什么性质]圆的内接四边形

    1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...

    发布于:2025-12-31

    详细阅读
  • [相切约束的作图原理]相切在作图中的应用

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...

    发布于:2025-12-31

    详细阅读
  • 【圆周角定理】圆周角

    第一课时 (一) 教学目标 : (1)理解的概念,掌握的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:的概念和定理 教学难点 :定理的证明中由“一般到特殊”的数学思想方法和完全归纳...

    发布于:2025-12-31

    详细阅读
  • 可化为一元二次方程的分式方程的解法_可化为一元二次方程的分式方程

    一、教学目标 1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根 2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点 二、重点·难点·疑点及解决办法 1.教学重点:的解法. 2.教学难点...

    发布于:2025-12-31

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计