直线和圆的位置关系_直线和圆的位置关系

九年级数学教案 2016-03-05 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】

1.知识结构

2.重点、难点分析

重点:的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究“”的基础.

难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.

3.教法建议

本节内容需要一个课时.

(1)教师通过电脑演示,组织学生自主观察、分析,并引导学生把“点和圆的位置关系”研究的方法迁移过来,指导学生归纳、概括;

(2)在教学中,以“形”归纳“数”, 以“数”判断“形”为主线,开展在教师组织下,以学生为主体,活动式教学


教学目标:

1、使学生理解直线和圆的三种位置关系,掌握其判定方法和性质;

2、通过的探究,向学生渗透分类、数形结合的思想,培养学生

观察、分析和概括的能力;

3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点.

教学重点:的判定方法和性质.

教学难点:直线和圆的三种位置关系的研究及运用.

教学设计:

(一)基本概念

1、观察:(组织学生,使学生从感性认识到理性认识)

2、归纳:(引导学生完成)

(1)直线与圆有两个公共点;(2)直线和圆有唯一公共点(3)直线和圆没有公共点

3、概念:(指导学生完成)

由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:

(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.

(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.

(3)相离:直线和圆没有公共点时,叫做直线和圆相离.

研究与理解:

①直线与圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同.

②直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?

(二)直线与圆的位置关系的数量特征

1、迁移:点与圆的位置关系

(1)点P在⊙O内 d<r

(2)点P在⊙O上 d=r

(3)点P在⊙O外 d>r

2、归纳概括:

如果⊙O的半径为r ,圆心O到直线l的距离为d,那么

(1)直线l和⊙O相交 d<r
(2)直线l和⊙O相切 d=r
(3)直线l和⊙O相离 d>r

(三)应用

例1、在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么?

(1)r=2cm; (2)r=2.4cm; (3)r=3cm.

学生自主完成,老师指导学生规范解题过程.

解:(图形略)过C点作CD⊥AB于D,

在Rt△ABC中,∠C=90°,

AB=,

∵ ,∴AB·CD=AC·BC,

∴ (cm),

(1)当r =2cm时  CD>r,∴圆C与AB相离;

(2)当r=2.4cm时,CD=r,∴圆C与AB相切;

(3)当r=3cm时,CD<r,∴圆C与AB相交.

练习P105,1、2.

(四)小结:

1、知识:(指导学生归纳)

2、能力:观察、归纳、概括能力,知识迁移能力,知识应用能力.

(五)作业 :教材P115,1(1)、2、3.

探究活动

问题:如图,正三角形ABC的边长为6 厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB一BC一CA运动,回到点A时,⊙O随着点O的运动而移动.在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下,r的取值范围及相应的切点个数.

略解:由正三角形的边长为6 厘米,可得它一边上的高为9厘米.

①∴当⊙O的半径r=9厘米时,⊙O在移动中与△ABC的边共相切三次,即切点个数为3.

②当0<r<9时,⊙O在移动中与△ABC的边共相切六次,即


本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38572.html

  • 切线长定理_切线长定理

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点. 难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数...

    发布于:2025-12-29

    详细阅读
  • 一元二次方程根的判别式应用|一元二次方程的根的判别式(一)

    1 知识结构: 2 重点、难点分析 (1)本节的重点是会用判别式判定根的情况 一元二次方程的根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也可以利用它进一步学习函数的有关内容,所以,它是本节课的重点 (2)本节的难点是一元二次方程根的三种情况的推导...

    发布于:2025-12-29

    详细阅读
  • [垂直于弦的直径教案]垂直于弦的直径

    第一课时 垂直于弦的直径(一) 教学目标: (1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证实; (2)进一步培养学生观察问题、分析问题和解决问题的能力; (3)通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱 教学重点、难点:...

    发布于:2025-12-29

    详细阅读
  • 圆和圆的位置关系|圆和圆的位置关系

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:两圆的位置关系和两圆相交、相切的性质.它们是本节的主要内容,是圆的重要概念性知识,也是今后研究圆与圆问题的基础知识. 难点:两圆位置关系的判定与相交两圆的连心线垂直平分两圆的公共弦的性质的运用.由于两圆位置关系有5种类型,特别是相离有外离和...

    发布于:2025-12-29

    详细阅读
  • 相切约束的作图原理|相切在作图中的应用

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...

    发布于:2025-12-29

    详细阅读
  • 二次函数的图像和性质|一次函数的图象和性质

    教学目标 : 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化...

    发布于:2025-12-29

    详细阅读
  • 【一元二次方程的求根公式】一元二次方程

    教学目标 1. 了解整式方程和的概念;2. 知道的一般形式,会把化成一般形式。3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。教学重点和难点: 重点:的概念和它的一般形式。 难点:对的一般形式的正确理解及其各项系数的确定。教学建议...

    发布于:2025-12-29

    详细阅读
  • 反比例函数及其图象的教学设计_反比例函数及其图象

    教学设计示例1 教学目标 : 1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式; 2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质; 3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想; 4、体会数学从实践中来又到实际中去的研究、应用过程; 5、培养学生的观察能力...

    发布于:2025-12-29

    详细阅读
  • 二次函数的图像和性质_一次函数的图象和性质

    教学目标: 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化的...

    发布于:2025-12-29

    详细阅读
  • 一次函数|一次函数

    【目的要求】1、使学生初步理解与正比例函数的概念。2、使学生能够根据实际问题中的条件,确定与正比例函数的解析式。【教学重点、难点】以及正比例函数的解析式【教学过程 】一、复习提问: 1、什么是函数? 2、函数有哪几种表示方法?3、举出几个函数的例子。二、新课讲解:可以选用提问时学生举出的...

    发布于:2025-12-29

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计