[正切和余切的关系]正切和余切 —— 初中数学第六册教案

九年级数学教案 2016-02-29 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】


锐 角 的 三 角 比

  ------正切和余切

      初三数学组   徐  榕

一、            教学目标 :

1、理解锐角的正切、余切概念,能正确使用锐角的正切、余切的符号语言。

2、通过探究活动,培养学生观察、分析问题,归纳、总结知识的能力;通过题目的变式,培养用转化思想解决数学问题的能力;通过不同题型的训练,提高学生的通试能力;通过探索题的教学,培养学生的创新意识。

3、通过不同题型的训练,培养学生的数学学习素养,通过学习形式的变换,孕育学生的品质。

4、培养学生间良好的互动协作精神和对知识强烈的求知欲。

二、            教学设计的指导思想:

贯彻“教为主导、学为主体、练为主线”的原则,引导学生自始至终地参与学习的全过程,让学生在探索过程中学得愉快、扎实、灵活,学会学习,发展能力。

三、            重、难点及教学策略:

重点:锐角的正切、余切概念,探究能力的培养

难点:理解一个锐角确定的直角三角形的两边的比是一个确定的值。

策略:突出重点、突破难点。

四、            教学准备:

U盘,电脑,一副三角板,一块三角形模型,网格纸

五、            教学环节的流程简图:

     创设问题情境 ——→ 问题的研究  ——→ 讲授新课 ——→ 归纳小结及布置作业 

六、            教学过程 :

一)            创设问题情境:

1、引领练习:

①    在Rt△ABC中,∠C=90°,当∠A=45°时,

随着三角形的边长的放大或缩小时,上面的比值是否发生变化?

②    在Rt△ABC中,∠C=90°,当∠A=30°时,

随着三角形的边长的放大或缩小时,上面的比值是否发生变化?

 

2、提出问题:

在Rt△ABC中,∠C=90°,一般情况下,

当∠A的大小确定,三角形的边长的放大或缩小时,上面的比值是否发生变化?

二)            问题的研究:

1、几何画板动画演示:

2、运用定理证明:

得出结论:在Rt△ABC中,∠C=90°,一般情况下,

当∠A的大小确定,三角形的边长的放大或缩小时,上面的比值不变。

三)            讲授新课:

课题: 29.1  正切和余切

1、基本概念:

①    在Rt△ABC中,∠C=90°,

 正切:tgA= =

(tangent) (tanA)

            (tg∠BAC)

     余切:ctgA= =

           (cotA)

②    tgA=

③     若∠A+∠B=90°,则tgA=ctgB  ,ctgA=tgB   

2、例题讲解:

例1:在Rt△ABC中,∠C=90°,AC=12,BC=7,

①求tgA的值.

②求tgB的值.

③过C点作CD⊥AB于D,求tg∠DCA的值.

3、巩固练习:

①    选择题:

1.在Rt△ABC中, ∠C=90°,若各边的长都扩大3倍,则∠B的正切值(    )

       A.扩大3倍    B.缩小为原来的     C.没有变化     D.扩大9倍

2.在Rt△ABC中, ∠C=90°, ∠A和∠B的对边是a,b,则与 的值相等的是(     )

      A.tgA    B.tgB     C.ctgA     D.ctgB

②    解答题:

如图,△ABC是直角三角形,∠C=90°,D、E在BC上,AC=4,

BD=5,DE=2,EC=3,∠ABC=α,

∠ADC=β,∠AEC=γ,

求: ①tgα。

②ctgβ。

③tgγ。

4、探索题:能否在网格纸中画一个Rt△,使其中一个锐角的正切值为 。

四)            小结:(略)

五)            思考题:已知:在Rt△ABC中, ∠C=90°,tgA、tgB是方程 的两根,求m.。

六)            布置作业 :

七、            板书设计 :(略)

八、            教学随笔:(略)

锐 角 的 三 角 比

  ------正切和余切

      初三数学组   徐  榕

一、            教学目标 :

1、理解锐角的正切、余切概念,能正确使用锐角的正切、余切的符号语言。

2、通过探究活动,培养学生观察、分析问题,归纳、总结知识的能力;通过题目的变式,培养用转化思想解决数学问题的能力;通过不同题型的训练,提高学生的通试能力;通过探索题的教学,培养学生的创新意识。

3、通过不同题型的训练,培养学生的数学学习素养,通过学习形式的变换,孕育学生的品质。

4、培养学生间良好的互动协作精神和对知识强烈的求知欲。

二、            教学设计的指导思想:

贯彻“教为主导、学为主体、练为主线”的原则,引导学生自始至终地参与学习的全过程,让学生在探索过程中学得愉快、扎实、灵活,学会学习,发展能力。

三、            重、难点及教学策略:

重点:锐角的正切、余切概念,探究能力的培养

难点:理解一个锐角确定的直角三角形的两边的比是一个确定的值。

策略:突出重点、突破难点。

四、            教学准备:

U盘,电脑,一副三角板,一块三角形模型,网格纸

五、            教学环节的流程简图:

     创设问题情境 ——→ 问题的研究  ——→ 讲授新课 ——→ 归纳小结及布置作业 

六、            教学过程 :

一)            创设问题情境:

1、引领练习:

①    在Rt△ABC中,∠C=90°,当∠A=45°时,

随着三角形的边长的放大或缩小时,上面的比值是否发生变化?

②    在Rt△ABC中,∠C=90°,当∠A=30°时,

随着三角形的边长的放大或缩小时,上面的比值是否发生变化?

 

2、提出问题:

在Rt△ABC中,∠C=90°,一般情况下,

当∠A的大小确定,三角形的边长的放大或缩小时,上面的比值是否发生变化?

二)            问题的研究:

1、几何画板动画演示:

2、运用定理证明:

得出结论:在Rt△ABC中,∠C=90°,一般情况下,

当∠A的大小确定,三角形的边长的放大或缩小时,上面的比值不变。

三)            讲授新课:

课题: 29.1  正切和余切

1、基本概念:

①    在Rt△ABC中,∠C=90°,

 正切:tgA= =

(tangent) (tanA)

            (tg∠BAC)

     余切:ctgA= =

           (cotA)

②    tgA=

③     若∠A+∠B=90°,则tgA=ctgB  ,ctgA=tgB   

2、例题讲解:

例1:在Rt△ABC中,∠C=90°,AC=12,BC=7,

①求tgA的值.

②求tgB的值.

③过C点作CD⊥AB于D,求tg∠DCA的值.

3、巩固练习:

①    选择题:

1.在Rt△ABC中, ∠C=90°,若各边的长都扩大3倍,则∠B的正切值(    )

       A.扩大3倍    B.缩小为原来的     C.没有变化     D.扩大9倍

2.在Rt△ABC中, ∠C=90°, ∠A和∠B的对边是a,b,则与 的值相等的是(     )

      A.tgA    B.tgB     C.ctgA     D.ctgB

②    解答题:

如图,△ABC是直角三角形,∠C=90°,D、E在BC上,AC=4,

BD=5,DE=2,EC=3,∠ABC=α,

∠ADC=β,∠AEC=γ,

求: ①tgα。

②ctgβ。

③tgγ。

4、探索题:能否在网格纸中画一个Rt△,使其中一个锐角的正切值为 。

四)            小结:(略)

五)            思考题:已知:在Rt△ABC中, ∠C=90°,tgA、tgB是方程 的两根,求m.。

六)            布置作业 :

七、            板书设计 :(略)

八、            教学随笔:(略)


本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38449.html

  • 切线长定理_切线长定理

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点. 难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数...

    发布于:2025-12-29

    详细阅读
  • 一元二次方程根的判别式应用|一元二次方程的根的判别式(一)

    1 知识结构: 2 重点、难点分析 (1)本节的重点是会用判别式判定根的情况 一元二次方程的根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也可以利用它进一步学习函数的有关内容,所以,它是本节课的重点 (2)本节的难点是一元二次方程根的三种情况的推导...

    发布于:2025-12-29

    详细阅读
  • [垂直于弦的直径教案]垂直于弦的直径

    第一课时 垂直于弦的直径(一) 教学目标: (1)理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证实; (2)进一步培养学生观察问题、分析问题和解决问题的能力; (3)通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱 教学重点、难点:...

    发布于:2025-12-29

    详细阅读
  • 圆和圆的位置关系|圆和圆的位置关系

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:两圆的位置关系和两圆相交、相切的性质.它们是本节的主要内容,是圆的重要概念性知识,也是今后研究圆与圆问题的基础知识. 难点:两圆位置关系的判定与相交两圆的连心线垂直平分两圆的公共弦的性质的运用.由于两圆位置关系有5种类型,特别是相离有外离和...

    发布于:2025-12-29

    详细阅读
  • 相切约束的作图原理|相切在作图中的应用

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...

    发布于:2025-12-29

    详细阅读
  • 二次函数的图像和性质|一次函数的图象和性质

    教学目标 : 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化...

    发布于:2025-12-29

    详细阅读
  • 【一元二次方程的求根公式】一元二次方程

    教学目标 1. 了解整式方程和的概念;2. 知道的一般形式,会把化成一般形式。3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。教学重点和难点: 重点:的概念和它的一般形式。 难点:对的一般形式的正确理解及其各项系数的确定。教学建议...

    发布于:2025-12-29

    详细阅读
  • 反比例函数及其图象的教学设计_反比例函数及其图象

    教学设计示例1 教学目标 : 1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式; 2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质; 3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想; 4、体会数学从实践中来又到实际中去的研究、应用过程; 5、培养学生的观察能力...

    发布于:2025-12-29

    详细阅读
  • 二次函数的图像和性质_一次函数的图象和性质

    教学目标: 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点: 1、从实际问题中抽象概括出运动变化的...

    发布于:2025-12-29

    详细阅读
  • 一次函数|一次函数

    【目的要求】1、使学生初步理解与正比例函数的概念。2、使学生能够根据实际问题中的条件,确定与正比例函数的解析式。【教学重点、难点】以及正比例函数的解析式【教学过程 】一、复习提问: 1、什么是函数? 2、函数有哪几种表示方法?3、举出几个函数的例子。二、新课讲解:可以选用提问时学生举出的...

    发布于:2025-12-29

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计