分式_分式

九年级数学教案 2016-02-29 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】


学习辅导:(1)第一课时  9.1  一、学习目标1.掌握、有理式的概念。2.掌握是否有意义、的值是否等于零的识别方法。二、重点难点重点是正确理解的意义,是否有意义的条件及的值为零的条件,也是本节的难点。1.的概念:一般地,形如 的式子叫做,其中A和B均为整式,B中含有字母。2.是否有意义的识别方法:当的分母为零时,无意义;当的分母不等于零时,有意义。3.的值是否为零的识别方法:当的分子是零而分母不等于零时,的值等于零。4.对整式、的正确区别:的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是与整式的根本区别。三、解题方法指导【例1】下列各式哪些是,哪些是整式?① +m2  ②1+x+y2-   ③   ④ ⑤    ⑥      ⑦ 答案:②、④、⑤是,①、③、⑥、⑦是整式。说明:此题主要考查对的概念的理解,区分两者的关键是看分母中是否含有字母。③中的π是一个具体的数而不是字母,不要误认为③是,整式可以有字母,只要分母不含字母就不是。【例2】当x取什么值时, 有意义?解:由分母x2-4=0,得x=±2。∴  当x≠±2时, 有意义。说明:考查有无意义,取决于的分母的值是否为零,即只考虑分母即可。注意,因为的分子、分母有公因式x+2,倘若先将公因式约去得 ,此时分母的字母取值范围为x≠2,这样就扩大了字母的允许值。所以不能先约去公因式。【例3】当x取什么数时, ①有意义?               ②值为零?分析:当分母等于零时,没有意义。当分子等于零而分母不等于零时,的值为零。解:①由分母x2-8x+15=0,得(x-3)(x-5)=0。∴  x1=3,x2=5。∴  当x≠3和x≠5时, 有意义。②由分子 -3=0,得x=±3。当x=3时,分母x2-8x+15=0;当x=-3时,分母x2-8x+15≠0。∴  当x=-3时, 的值为零。说明:有无意义,取决于分母中字母取值是否使分母为零,所以只考虑分母即可。要使的值为零,必须在有意义的前提下考虑,既要考虑字母取值使分子为零,又要考虑分母是否为零,两者缺一不可。四、激活思维训练▲知识点:在什么情况下有意义【例】当x为何值时, 有意义?分析:因为是繁,有多层分母,每层分母都必须不为零,繁才有意义。解: =∴            即  ∴  当x≠±1且x≠0时, 有意义。五、基础知识检测1.填空题:(1)如果B中        ,式子 叫做,其中A叫做的           ,B叫做的          。(2)在中,分母               。(3)                   统称有理式。(4)当x=        时, 无意义。(5)当x=        时, 的值为零;当 =0时,x=        。(6) =成立的条件是        。(7)当x       时, 有意义。2.选择题:(1)下列说法正确的是                           A.形如 的式子叫B.分母不等于零,有意义C.的值等于零,无意义D.等于零,的值就等于零(2)已知有理式: 、 、 、 、 x2、 +4,其中有                                                 A.2个       B.3个       C.4个       D.5个(3)使 有意义的x的值是              A.4a                       B.-4aC.±4a                     D.非±4a的一切实数(4)使 的值为零的x的值是          A.4m                       B.-4mC.±4m                     D.非±4m的一切实数3.解答下列各题:(1)当x取什么数时, 有意义?(2)当x为何值时, 无意义?(3)若 无意义,求x的值。六、创新能力运用1.已知 (1)当x为何值时,无意义?(2)当x为何值时,的值为零?(3)当x为何值时,的值为-1?2.当x为何值时,下列的值为正?(1)                (2)  参考答案【基础知识检测】1.(1)含有字母、分子、分母(2)不等于零             (3)整式、(4)x=                 (5)x=- ,x=±3(6)x≠-5               (7)x≠- 2.(1)B      (2)B      (3)D       (4)B3.(1)x≠±1             (2)x=(3)x=±4【创新能力运用】1.(1)x=               (2)x=(3)x=2.(1)x>3或x<-3        (2)x> 或x<-2教学后记 

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38429.html

  • 正弦和余弦_正弦和余弦

    教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三...

    发布于:2025-12-31

    详细阅读
  • [圆的内接四边形有什么性质]圆的内接四边形

    1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...

    发布于:2025-12-31

    详细阅读
  • 【扇形所含弓形的面积】圆、扇形、弓形的面积

    (一) 教学目标 : 1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算; 2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力; 3、在扇形面积公式的推导和例题教学过程 中,渗透“从特殊到一般,再由一般到特殊”的辩证思想. 教学重点:扇形面积公式的导出及应用....

    发布于:2025-12-31

    详细阅读
  • 方差公式|方差

    教学设计示例1第一课时 素质教育目标 (一)知识教学点 使学生了解、标准差的意义,会计算一组数据的与标准差 (二)能力训练点 1.培养学生的计算能力 2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力 (三)德育渗透点 1.培养学生认真、耐心、细致的学习态度和学习习惯 2.渗透数学...

    发布于:2025-12-31

    详细阅读
  • 两圆的公切线条数|两圆的公切线

    第一课时 (一) 教学目标 : (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点 : 两圆外公切线和两圆外公切线长学生理解的不透,...

    发布于:2025-12-31

    详细阅读
  • 二次函数y=ax2的图象和性质|二次函数y=ax2的图象

    教学设计示例1 课题:二次函数 的图象 教学目标: 1、会用描点法画出二次函数 的图象; 2、根据图象观察、分析出二次函数 的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由特殊到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探...

    发布于:2025-12-31

    详细阅读
  • [圆的内接四边形有什么性质]圆的内接四边形

    1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...

    发布于:2025-12-31

    详细阅读
  • [相切约束的作图原理]相切在作图中的应用

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...

    发布于:2025-12-31

    详细阅读
  • 【圆周角定理】圆周角

    第一课时 (一) 教学目标 : (1)理解的概念,掌握的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:的概念和定理 教学难点 :定理的证明中由“一般到特殊”的数学思想方法和完全归纳...

    发布于:2025-12-31

    详细阅读
  • 可化为一元二次方程的分式方程的解法_可化为一元二次方程的分式方程

    一、教学目标 1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根 2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点 二、重点·难点·疑点及解决办法 1.教学重点:的解法. 2.教学难点...

    发布于:2025-12-31

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计