§6.1 正弦和余弦(1)

九年级数学教案 2016-02-29 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】


[课    题]  §6.1  正弦和余弦(1[教学目的]  使学生了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一条边或一个锐角),求这个直角三角形的其他元素(直角除外);使学生了解下列事实:在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。[教学重点]  已知直角三角形的一条边和另一个元素(一条边或一个锐角),求这个直角三角形的其他元素。[教学难点 ]  在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。[教学关键]  在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。。[教学用具]  三角板、小黑板。[教学形式]  讲练结合法。[教学用时]  45′×1 [教学过程 ][复习提问1、什么叫做直角三角形?2、如果直角三角形△ABC中,∠C为直角,它的直角边是什么?斜边是什么?这个直角三角形可以用什么符号来表示?3、对于一个直角三角形来说,除了一个内角是直角外,还有两个内角是锐角,有三条边,在这除了直角以外的5个“元素”中,已知几个“元素”,通过什么可以求出未知的其他“元素”?[讲解新课]一、让学生阅读教科书第1页上的插图和引例(时间3分钟),然后提问:1、这个有关测量的实际问题有什么特点?(有一个重要的测量点不可到达。)2、把这个实际问题化为数学模型后,其图形是什么图形?(直角三角形。)3、能不能根据已知条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量?(不一定能,因为斜边即水管的长度是一个较大的数值,这样做就需要较大面积的平地或纸张,再说画图也不方便。)4、想想看,除了测量、作图或画图等方法外,我们还学过哪些方法?(计算与证明。)5、这个实际问题可以归结为怎样一个数学问题?(在Rt△ABC中,∠C为直角,已知锐角A和斜边AB,求∠A的对边BC。)这时指出,由于∠A不一定是特殊角,我们难以运用学过的定理来证明BC的长度。因此在下面考虑能不能通过式子变形和计算来求得BC的值。这就是我们在这一章中要学习的一项新知识。二、让学生阅读教科书第2页至第3页第3行的内容,要求一边阅读,一边观察自己随身携带的两块三角板(时间5分钟),然后提问:1、(出示自己带来的教具之一——不等腰的那把本制三角板)在这把三角板中,30°角所对的直角边与斜边之间有什么关系?(30°角所对的直角边等于斜边的一半。)你们的三角板中,这个结论是不是也都成立?

45°30°BB2、(用小黑板出示图6—1(1),我们把这个结论化为数学式子,可以得到什么?( ==。)

CCAA3、这就是说,当∠A=30°时,不管直角三角形的大小如何,∠A的     图6—1(1)       图6—1(2)对边与斜边的比值都等于 。那么,根据这个比值 ,如果已知斜边AB的长,怎样算出∠A的对边BC的长呢?(BC=AB。)4、(出示自己带来的另一教具——等腰的那把本制三角板和小黑板上的图6—1(2),类似地,运用勾股定理,在所有等腰的那块三角板中,我们可以发现什么?( ====。)5、这就是说,当∠A=45°时,不管直角三角形的大小如何,∠A的对边与斜边的比值都等于 。那么,根据这个比值 ,如果已知斜边AB的长,怎样算出∠A的对边BC的长呢?(BC=AB。)三、那么,当锐角A取其他固定值时,∠A的对边与斜边的比值能否也是一个固定值呢?为了回答这一问题,请同学们阅读教科书第3页第3行下面的内容(时间4分钟),然后提问:1、在直角三角形中,如果有一个锐角取固定值,而夹这个锐角的一条直角边和斜边的长都可以变化,那么,当我们把有这样特殊点的直角三角形中取固定值的锐角叠合在一起,并把夹这个锐角的直角边重合在一条直线上时,斜边会出现什么情况?(斜边也会重合在一条直线上。)2、(出示小黑板上的图6—2),Rt△AB1C1、Rt△AB2C2、Rt△AB3C3、……之间有什么关系?(彼此相似。)为什么?(它们有公共的锐角A。)

B3B23、那么, 、 、 这些比值之间有什么关系?(彼此相等。)为什么?(相似三角形中对应边的比相等。)

B14、由此可得什么结论?(在直角三角形中,当一个锐角取固定值时,它的对边与斜边的比也取一个固定值。)

C3C2C1A[课堂练习]在△ABC中,∠C为直角。               图6—21、如果∠A=60°,那么∠B的对边与斜边的比值是多少?2、如果∠A=60°,那么∠A的对边与斜边的比值是多少?3、如果∠A=30°,那么∠B的对边与斜边的比值是多少?4、如果∠A=45°,那么∠B的对边与斜边的比值是多少?[课堂小结]在这一节课中,我们获得了一个重要的结论:在直角三角形中,当一个锐角(∠A)取固定值时,它的对边与斜边的比值( )也是一个固定值,如果后者(即 )能够由前者(即∠A)求出,那么引例中的实际问题(求BC的长)就可以解决了。所以,从下节课起,我们将进一步研究这类比值(即 等)的特点,从而得以求出它们。[课外作业 ]复习教科书第1~3页上的全部内容。 [板书设计 ]课题:一、1、2、3、4、5、二1、2、3、4、5、三、1、2、3、4、 课堂练习      [课后记]通过本节课内容的学习,我们对直角三角形又有了一个新的认识,即:当直角三角形中,有一锐角固定时,其对边与斜边的比值也是固定的这一重要性质。这在我们今后的学习中是十分重要的。 

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38426.html

  • [大班数学教案位置关系]数学教案-两圆的位置关系

    课 题: 两圆的位置关系教学目的:掌握两圆的五种位置关系及判定方法;;教学重点:两圆的五种位置的判定.教学难点 :知识的综合运用.教学过程 :一,复习引入:请说出直线和圆的位置关系有哪几种?研究直线和圆的位置关系时,从两个角度来研究这种位置关系的,⑴直线和圆的公共点个数;⑵圆心到直线的距离d与半径...

    发布于:2016-03-07

    详细阅读
  • 数学教案模板小学_数学教案- 函数(二)

    课题 函数(二) 一、教学目的1.使学生理解自变量的取值范围和函数值的意义。2.使学生理解求自变量的取值范围的两个依据。3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。4.通过求函数中自变量的取值范围使学生进一步理解函数概念。...

    发布于:2016-03-07

    详细阅读
  • 【数学教案圆柱体】数学教案-圆

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:①点和圆的三种位置关系,圆的有关概念,因为它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备 难点:① 圆的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;...

    发布于:2016-03-07

    详细阅读
  • 切线长定理|切线长定理

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:及其应用.因再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点. 难点:与有关的证明和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数...

    发布于:2016-03-07

    详细阅读
  • 数学教案正方形_数学教案-正弦和余弦

    教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30、45、60角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的...

    发布于:2016-03-07

    详细阅读
  • 小班三项大小比较数学教案_数学教案-二次三项式的因式分解(用公式法)

    一、教学目标 1.使学生理解二次三项式的意义;知道二次三项式的因式分解与一元二次方程的关系; 2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式; 3.通过二次三项式因式分解方法的推导,进一步启发学生学习的兴趣,提高他们研究问题的能力; 4.通过二次三项式因式分解方法的推导,进...

    发布于:2016-03-07

    详细阅读
  • 六年级上册数学教案圆|数学教案-两圆的公切线

    第一课时 两圆的公切线(一) 教学目标 : (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点 : 两圆外公切线和两圆外公切线长学生...

    发布于:2016-03-07

    详细阅读
  • [认识三角数学教案]数学教案-解直角三角形

    教学建议 1.知识结构: 本小节主要学习解直角三角形的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法 2.重点和难点分析: 教学重点和难点:直角三角形的解法 本节的重点和难点是直角三角形的解法 为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形,直角三角...

    发布于:2016-03-07

    详细阅读
  • 【初三数学教案二次函数】数学教案-二次函数

    知识点〗二次函数、抛物线的顶点、对称轴和开口方向〖大纲要求〗1. 理解二次函数的概念;2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3. 会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般...

    发布于:2016-03-07

    详细阅读
  • [大班数学教案平面位置对应]数学教案-平面直角坐标系

    1、教材分析: ⑴知识结构: 日常生活及其它学科需要一种确定平面内点的位置的方法 在数学上,可以类比数轴,引出平面直角坐标系的概念 完成了坐标平面内的点与有序实数对的一一对应,也把数与形统一了起来 ⑵重点、难点分析: 本节的重点是能正确画出直角坐标系,并能在直角坐标系中,根据坐标找出点,由点求出坐...

    发布于:2016-03-07

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计