【一元二次方程的解法】一元二次方程的解法
【jiaoan.jxxyjl.com--九年级数学教案】
教学目标
1. 初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如 的方程;
2. 初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;
3. 掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;
4. 会用因式分解法解某些一元二次方程。
5. 通过对一元二次方程解法的教学,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。
教学重点和难点
重点:一元二次方程的四种解法。
难点:选择恰当的方法解一元二次方程。
教学建议:
一、教材分析:
1.知识结构:
2.重点、难点分析
(1)熟练掌握开平方法解一元二次方程
用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。
如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程 , 和方程 就可以直接开平方法求解,在开平方时注意取正、负两个平方根。
配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为 的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。
(2)熟记求根公式 ( )和公式中字母的意义在使用求根公式时要注意以下三点:
1)把方程化为一般形式,并做到 、 、 之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。
2)把一元二次方程的各项系数 、 、 代入公式时,注意它们的符号。
3)当 时,才能求出方程的两根。
(3)抓住方程特点,选用因式分解法解一元二次方程
如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。
我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。
二、教法建议
1. 教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.
2. 注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践.
教学设计示例
教学目标
1. 使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0, b≠0, c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;
2. 在理解的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;
3. 在数学思想方法方面,使学生体会“转化”的思想和掌握配方法。
教学重点和难点
重点:掌握用配方法解一元二次方程。
难点:凑配成完全平方的方法与技巧。
教学过程 设计
一 复习
1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)
2.不完全一元二次方程的哪几种形式?
(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))
3.对于前两种不完全的一元二次方程ax2=0 (a≠0)和ax2+c=0 (a≠0),我们已经学会了它们的解法。
特别是结合换元法,我们还会解形如(x+m) 2=n(n≥0)的方程。
例 解方程:(x-3) 2=4 (让学生说出过程)。
解:方程两边开方,得 x-3=±2,移项,得 x=3±2。
所以 x1=5,x2=1. (并代回原方程检验,是不是根)
4.其实(x-3) 2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。(把这个展开过程写在黑板上)
(x-3) 2=4, ①
x2-6x+9=4, ②
x2-6x+5=0. ③
二 新课
1.逆向思维
我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m) 2=n的形式。这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m) 2。
2.通过观察,发现规律
问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。 (添一项+1)
即 (x2+2x+1)=(x+1) 2.
练习,填空:
x2+4x+( )=(x+ ) 2; y2+6y+( )=(y+ ) 2.
算理 x2+4x=2x·2,所以添2的平方,y2+6y=y2+2y3,所以添3的平方。
总结规律:对于x2+px,再添上一次项系数一半的平方,就能配出一个含未知数的一个次式的完全平方式。即 .+ ( ) ④
(让学生对④式的右边展开,体会括号内第一项与第二项乘积的2倍,恰是左边的一次
项,括号内第二项的平方,恰是配方时所添的常数项)
项固练习(填空配方)
总之,左边的常数项是一次项系数一半的平方。
问:如果左边的一次项系数是负数,那么右边括号里第二项的正负号怎么取?算理是什么?
巩固练习(填空配方)
x2-bx+( )=(x- ) 2; x2-(m+n)x+( )=(x- ) 2.
本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38413.html
-
圆的内接四边形有什么性质_圆的内接四边形详细阅读
1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...
-
【函数的图象】函数的图象详细阅读
教学目标: 1、培养学生看图识图的能力 2、在识图过程中,渗透数形结合的数学思想 3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性 4、激发学生学习数学的兴趣,培养学生的探索精神 教学重点:培养学生看图识图的能力 教学难点:渗透数形结合的数学思想 教学用具:计算机、投影机 教学...
-
一次函数|一次函数详细阅读
教学目标: 1、知道与正比例函数的意义. 2、能写出实际问题中正比例关系与关系的解析式. 3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性. 4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力 教学重点:对于与正比例函数概念的理解. 教学难点:根据具体条件求与正比例函数的解...
-
【一元二次方程的求根公式】一元二次方程详细阅读
教学目标1. 了解整式方程和的概念;2. 知道的一般形式,会把化成一般形式。3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。教学重点和难点: 重点:的概念和它的一般形式。 难点:对的一般形式的正确理解及其各项系数的确定。教学建议:...
-
可化为一元二次方程的分式方程的解法|可化为一元二次方程的分式方程详细阅读
一、教学目标 1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根 2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点 二、重点·难点·疑点及解决办法 1.教学重点:的解法. 2.教学难点...
-
过三点的圆的方程|过三点的圆详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:①确定圆的定理 它是圆中的基础知识,是确定圆的理论依据;②不在同一直线上的三点作圆 “作圆”不仅体现在证明“确定圆的定理”的重要作用,也是解决实际问题中常用的方法;③反证法证明命题的一般步骤 反证法虽是选学内容,但它是证明数学命题的重要的基本...
-
【正弦和余弦】正弦和余弦详细阅读
教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三...
-
[频率分布直方图中每个小长方形的面积表示]频率分布详细阅读
(一) 一、教学目的 1.理解频数、频率的概念,了解的意义和作用. 2.使学生会就一组数据列出表,画出直方图. 二、教学重点、难点 重点:按步骤就一组数据列出表,画出直方图. 难点:组距、组数、分点的确定. 三、教学过程 复习提问 如何在直角坐标系中做出(160 5,18)和(151 5,3)的对应...
-
【二次三项式因式分解题目】二次三项式的因式分解(用公式法)详细阅读
一、教学目标 1.使学生理解二次三项式的意义;知道二次三项式的因式分解与一元二次方程的关系; 2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式; 3.通过二次三项式因式分解方法的推导,进一步启发学生学习的兴趣,提高他们研究问题的能力; 4.通过二次三项式因式分解方法的推导,进一...
-
[计算器怎么求平均数和标准差]用计算器求平均数、标准差与方差详细阅读
教学目标 1、掌握的方法. 2、会.教学建议 重点、难点分析 1、本节内容的重点是,难点是准确操作计算器. 2、计算器上的标准差用 表示,和教科书中用S表示不一样,但意义是一样的.而计算器上的S和我们教科书上的标准差S意义不一样.在计算器上S和 是并排在一起的,按同一键,都是统计计算用的.因S在前,...