【三角形的内切圆】三角形的内切圆

九年级数学教案 2016-03-03 网络整理 晴天

【jiaoan.jxxyjl.com--九年级数学教案】

1、教材分析

(1)知识结构

(2)重点、难点分析

重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一.

难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好.

2、教学建议

本节内容需要一个课时.

(1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;

(2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学.

教学目标 

1、使学生了解尺规作的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;

2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;

3、激发学生动手、动脑主动参与课堂教学活动.

教学重点

三角形内切圆的作法和三角形的内心与性质.

教学难点 

三角形内切圆的作法和三角形的内心与性质.

教学活动设计

一)提出问题

1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个最大的圆?想一想,怎样画?

2、分析、研究问题:

让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义.

3、解决问题:

例1  作圆,使它和已知三角形的各边都相切.

引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法.

提出以下几个问题进行讨论:

①作圆的关键是什么?

②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?

③这样的点I应在什么位置?

④圆心I确定后半径如何找.

A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成.

完成这个题目后,启发学生得出如下结论: 和三角形的各边都相切的圆可以作一个且只可以作出一个.

(二)类比联想,学习新知识.

1、概念:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形

2、类比:

名称

确定方法

图形

性质

外心(三角形外接圆的圆心)

三角形三边中垂线的交点

(1)OA=OB=OC;

(2)外心不一定在三角形的内部.

内心(三角形内切圆的圆心)

三角形三条角平分线的交点

(1)到三边的距离相等;

(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;

(3)内心在三角形内部.

3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形

4、概念理解:

引导学生理解及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解.使学生弄清“内”与“外”、“接”与“切”的含义.“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”.
三)应用与反思

例2 如图,在△ABC中,∠ABC=50°,∠ACB=75°,点O是三角形的内心.

求∠BOC的度数

分析:要求∠BOC的度数,只要求出∠OBC和∠0CB的度数之和就可,即求∠l十∠3的度数.因为O是△ABC的内心,所以OB和OC分别为∠ABC和∠BCA的平分线,于是有∠1十∠3= (∠ABC十∠ACB),再由三角形的内角和定理易求出∠BOC的度数.

解:(引导学生分析,写出解题过程)

例3 如图,△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D

求证:DE=DB

分析:从条件想,E是内心,则E在∠A的平分线上,同时也在∠ABC的平分线上,考虑连结BE,得出∠3=∠4.

从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样考虑到连结BE.于是得到下述法.

证明:连结BE.

E是△ABC的内心

又∵∠1=∠2

∠1=∠2

∴∠1+∠3=∠4+∠5

∴∠BED=∠EBD

∴DE=DB

练习 分析作出已知的锐角三角形、直角三角形、钝角,并说明三角形的内心是否都在三角形内.

(四)小结

1.教师先向学生提出问题:这节课学习了哪些概念?怎样作已知?学习时互该注意哪些问题?

2.学生回答的基础上,归纳总结:

(1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念.

(2)利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径.

(3)在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连结内心和三角形顶点”这一辅助线的添加和应用.

(五)作业 

教材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题.

探究活动

问题:如图1,有一张四边形ABCD纸片,且AB=AD=6cm,CB=CD=8cm,∠B=90°.

(1)要把该四边形裁剪成一个面积最大的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到0.1cm);

(2)计算出最大的圆形纸片的半径(要求精确值).

提示:(1)由条件可得AC为四边形似的对称轴,存在内切圆,能用折叠的方法找出圆心:

如图2,①以AC为轴对折;②对折∠ABC,折线交AC于O;③使折线过O,且EB与EA边重合.则点O为所求圆的圆心,OE为半径.

(2)如图3,设内切圆的半径为r,则通过面积可得:6r+8r=48,∴r=.

本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/38519.html

  • 圆的内接四边形有什么性质_圆的内接四边形

    1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...

    发布于:2025-12-30

    详细阅读
  • 【函数的图象】函数的图象

    教学目标: 1、培养学生看图识图的能力 2、在识图过程中,渗透数形结合的数学思想 3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性 4、激发学生学习数学的兴趣,培养学生的探索精神 教学重点:培养学生看图识图的能力 教学难点:渗透数形结合的数学思想 教学用具:计算机、投影机 教学...

    发布于:2025-12-30

    详细阅读
  • 一次函数|一次函数

    教学目标: 1、知道与正比例函数的意义. 2、能写出实际问题中正比例关系与关系的解析式. 3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性. 4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力 教学重点:对于与正比例函数概念的理解. 教学难点:根据具体条件求与正比例函数的解...

    发布于:2025-12-30

    详细阅读
  • 【一元二次方程的求根公式】一元二次方程

    教学目标1. 了解整式方程和的概念;2. 知道的一般形式,会把化成一般形式。3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。教学重点和难点: 重点:的概念和它的一般形式。 难点:对的一般形式的正确理解及其各项系数的确定。教学建议:...

    发布于:2025-12-30

    详细阅读
  • 可化为一元二次方程的分式方程的解法|可化为一元二次方程的分式方程

    一、教学目标 1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根 2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点 二、重点·难点·疑点及解决办法 1.教学重点:的解法. 2.教学难点...

    发布于:2025-12-30

    详细阅读
  • 过三点的圆的方程|过三点的圆

    1、教材分析 (1)知识结构 (2)重点、难点分析 重点:①确定圆的定理 它是圆中的基础知识,是确定圆的理论依据;②不在同一直线上的三点作圆 “作圆”不仅体现在证明“确定圆的定理”的重要作用,也是解决实际问题中常用的方法;③反证法证明命题的一般步骤 反证法虽是选学内容,但它是证明数学命题的重要的基本...

    发布于:2025-12-30

    详细阅读
  • 【正弦和余弦】正弦和余弦

    教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三...

    发布于:2025-12-30

    详细阅读
  • [频率分布直方图中每个小长方形的面积表示]频率分布

    (一) 一、教学目的 1.理解频数、频率的概念,了解的意义和作用. 2.使学生会就一组数据列出表,画出直方图. 二、教学重点、难点 重点:按步骤就一组数据列出表,画出直方图. 难点:组距、组数、分点的确定. 三、教学过程 复习提问 如何在直角坐标系中做出(160 5,18)和(151 5,3)的对应...

    发布于:2025-12-30

    详细阅读
  • 【二次三项式因式分解题目】二次三项式的因式分解(用公式法)

    一、教学目标 1.使学生理解二次三项式的意义;知道二次三项式的因式分解与一元二次方程的关系; 2.使学生会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式; 3.通过二次三项式因式分解方法的推导,进一步启发学生学习的兴趣,提高他们研究问题的能力; 4.通过二次三项式因式分解方法的推导,进一...

    发布于:2025-12-30

    详细阅读
  • [计算器怎么求平均数和标准差]用计算器求平均数、标准差与方差

    教学目标 1、掌握的方法. 2、会.教学建议 重点、难点分析 1、本节内容的重点是,难点是准确操作计算器. 2、计算器上的标准差用 表示,和教科书中用S表示不一样,但意义是一样的.而计算器上的S和我们教科书上的标准差S意义不一样.在计算器上S和 是并排在一起的,按同一键,都是统计计算用的.因S在前,...

    发布于:2025-12-30

    详细阅读

Copyright @ 2011-2019 教案下载网 All Rights Reserved. 版权所有

免责声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

 站长统计