【平面直角坐标系】平面直角坐标系
【jiaoan.jxxyjl.com--九年级数学教案】
1、教材分析:
⑴知识结构:
日常生活及其它学科需要一种确定平面内点的位置的方法.在数学上,可以类比数轴,引出的概念.完成了坐标平面内的点与有序实数对的一一对应,也把数与形统一了起来.
⑵重点、难点分析:
本节的重点是能正确画出直角坐标系,并能在直角坐标系中,根据坐标找出点,由点求出坐标.直角坐标系的基本知识是学习全章的基础,在后面学习函数的图象以及一些具体函数的图象时都要应用这些知识.通过对这部分知识的反复而深入的练习、应用,渗透坐标的思想,进而形成数形结合的的数学思想.
本节的难点是中的点与有序实数对间的一一对应.限于初中的学习范围与学生的接受能力,学生理解起来有一定的困难,如:不理解有序实数对,或不能很好地理解一一对应,有的只限于机械地记忆,这样会影响对数形结合思想的形成.教材上只给出了比较简单的描述.教师可以通过课堂练习,让学生从一点一滴处理解横、纵坐标的值不同,即实数对不同,则在直角平面上的点的位置也不同,反之,亦然.
2、教学建议:
数学是世界的一部分,同时又隐藏在世界中.这样,数学教学的目的之一就是使学生通过数学的学习,认识数学与现实世界的联系,数学与人类生活的密切联系,以及数学对人类历史发展的影响与作用.因此,数学概念的产生有其必然性与合理性.
(1)概念的引入
组织学生看本章引言中的气温图,说明确定平面内点的位置是实际需要的.可以让学生进行讨论,他们的生活中还有什么类似的例子.如电影院中的座位,到图书馆找书,学生的课程表等.从丰富的背景材料中,体会数学的广泛应用性.
(2)讲授概念:
现实生活和其它学科向数学提出了问题,如何建立数学模型以解决这个问题呢?以前,我们学习过数轴.数轴上每一个点都对应一个实数,这个实数叫做这个点在数轴上的坐标,数轴上的点与实数是一一对应的.这样利用数轴可以研究一些数量关系的问题.确定平面内点的位置的方法也可以与此类似,类比出的概念,并结合图形讲述的有关概念.
(3)练习,深入地理解概念:
平面直角这节课的概念较多,又都是新的,开始的时候不适合太快,给学生一个适应的过程,一个思维的空间.如:x轴、y轴不在任何象限内,原点是x轴、y轴的交点等.然后,就可以多练习一些简单题,如给出坐标,在中标点,或反之,给出中点的位置,找出其坐标.通过小题的练习,使学生能逐步理解坐标平面内的点和有序实数对之间的一一对应关系.
总之,形成初步的数学概念后,学生可以通过变式,逐步加深对概念的理解.在解题过程中,教师的任务是创设环境,激励学生凭借自己的原有认知水平,完成对数学知识的建构.在相互讨论评价的过程中,培养学生的责任心.
这节课可以分两课时完成,第一节课由实际引入,类比数轴定义,给出的概念,并通过练习达到熟练的程度.第二节课,可视第一节课的掌握情况,适当增加一些有探索性的题目.如求一已知点关于x轴、y轴、原点的对称点的坐标;一三象限角平分线上的点的坐标特点等.
教学目标:
1、使学生进一步熟悉由坐标确定点和由点求坐标的方法.理解平面内的点与有序实数对之间的一一对应关系.
2、会用象限和坐标轴说明直角坐标系内点的位置,并会根据点的位置,确定点的横坐标、纵坐标的符号.
3、掌握确定已知点关于坐标轴(或原点)的对称点的方法.培养学生观察,归纳总结的能力.
4、培养学生发现问题,主动探索的能力.在与同伴的合作交流中,培养学生的责任心.
5、渗透数形结合的思想,培养学生思维的严谨性和深刻性.
教学重点:
1、掌握象限或坐标轴上的点的坐标的特点.
2、会求已知点关于坐标轴或原点的对称点的坐标.
教学难点:理解平面内的点与有序实数对之间的一一对应关系.
教学用具:直尺、计算机
教学方法:合作学习,讨论,探究
教学过程:
1、提出问题,主动探索
上节课我们学习了的概念,并介绍了象限与坐标轴.初步体会到平面内的点与有序实数对是一一对应的.今天我们需要开始新的探索,发现数学知识.
下面看例1
例1、指出下列各点所在象限或坐标轴;
你能发现什么规律吗?
解:描点画图后,可以从图中观察出,A点在第二象限;B点在第三象限;C点在第四象限;D点在第一象限;E点在x轴上;F点在y轴上.
做完这道题后,你发现能直接从点的坐标判断出点所在象限或坐标轴吗?
通过学生的分组讨论后,可总结如下:
象限与坐标轴的定义都是以图形的形式直观给出的.通过本例题,又总结出了相应的代数规律.渗透了数与形的结合.并培养了学生由特殊到一般的抽象思维能力.
练习: 习题13.1的第三题
第 1 2 页
本文来源:https://jiaoan.jxxyjl.com/jiunianjishuxuejiaoan/166727.html
-
正弦和余弦_正弦和余弦详细阅读
教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三...
-
[圆的内接四边形有什么性质]圆的内接四边形详细阅读
1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...
-
【扇形所含弓形的面积】圆、扇形、弓形的面积详细阅读
(一) 教学目标 : 1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算; 2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力; 3、在扇形面积公式的推导和例题教学过程 中,渗透“从特殊到一般,再由一般到特殊”的辩证思想. 教学重点:扇形面积公式的导出及应用....
-
方差公式|方差详细阅读
教学设计示例1第一课时 素质教育目标 (一)知识教学点 使学生了解、标准差的意义,会计算一组数据的与标准差 (二)能力训练点 1.培养学生的计算能力 2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力 (三)德育渗透点 1.培养学生认真、耐心、细致的学习态度和学习习惯 2.渗透数学...
-
两圆的公切线条数|两圆的公切线详细阅读
第一课时 (一) 教学目标 : (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想. 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法. 教学难点 : 两圆外公切线和两圆外公切线长学生理解的不透,...
-
二次函数y=ax2的图象和性质|二次函数y=ax2的图象详细阅读
教学设计示例1 课题:二次函数 的图象 教学目标: 1、会用描点法画出二次函数 的图象; 2、根据图象观察、分析出二次函数 的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由特殊到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探...
-
[圆的内接四边形有什么性质]圆的内接四边形详细阅读
1 知识结构 2 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3 教法建议 本节内容需要一个课时. (1)教...
-
[相切约束的作图原理]相切在作图中的应用详细阅读
1、教材分析 (1)知识结构 (2)重点、难点分析 重点:使学生理解画“连接”图形的理论依据.它是本节内容的核心,也是今后在实际制图应用中的基础. 难点:①对“连接”图形原理的理解.因为它是应用抽象知识来描述客观问题,学生常常因抽象思维能力较弱,而没有真正理解和掌握;②线段与弧、弧与弧连接时圆心位置...
-
【圆周角定理】圆周角详细阅读
第一课时 (一) 教学目标 : (1)理解的概念,掌握的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:的概念和定理 教学难点 :定理的证明中由“一般到特殊”的数学思想方法和完全归纳...
-
可化为一元二次方程的分式方程的解法_可化为一元二次方程的分式方程详细阅读
一、教学目标 1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根 2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点 二、重点·难点·疑点及解决办法 1.教学重点:的解法. 2.教学难点...