下学期是几月到几月_下学期 5.4 平面向量的坐标运算1
【jiaoan.jxxyjl.com--高一数学教案】
(第一课时)
一.教学目标
1.理解平面向量的坐标的概念,会写出给定向量的坐标,会作出已知坐标表示的向量;
2.掌握平面向量的坐标运算,能准确表述向量的加法、减法、实数与向量的积的坐标运算法则,并能进行相关运算,进一步培养学生的运算能力;
3.通过学习向量的坐标表示,使学生进一步了解数形结合思想,认识事物之间的相互联系,培养学生辩证思维能力.
二.教学重点 理解平面向量的坐标表示,平面向量的坐标运算.
教学难点 对平面向量坐标表示的理解.
三.教学具准备
直尺、投影仪
四.教学过程
1.设置情境
师:平面内有点 ,点 ,能否用坐标来表示向量 呢?这就是我们今天要学习的平面向量的坐标运算.
(板书课题)平面向量的坐标运算
2.探索研究
(1)师:平面向量的基本定理的内容是什么?什么叫平面向量的基底?
生:如果 、 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数 、 ,使
我们把不共线的向全 、 叫做这一平面内所有向量的一组基底,这就是平面向全的基本定理.
师:如果在直角坐标系下,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,任作一向量a,由平面向量基本定理知,有且只有一对实数x,y使得
我们就把(x,y)叫做向量a的(直角)坐标,记作;
这就叫做向量的坐标表示
显然i=(1,0) j=(0,1) 0=(0,0)
如图(1)所示,以原点O为起点与向量a相等的向量 ,则A点的坐标就是向量a的坐标,反之设 ,则点A的坐标(x,y)也就是向量 的坐标.
问题: 1°已知 (x1, y1) (x2, y2) 求 + , - 的坐标
2°已知 (x, y)和实数λ, 求λ 的坐标
解: + =(x1 +y1 )+( x2 +y2 )=(x1+ x2) + (y1+y2)
即: + =(x1+ x2, y1+y2) 同理: - =(x1- x2, y1-y2)
结论:两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。
同理可得:一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。
用减法法则:
∵ = - =( x2, y2) - (x1, y1)
=(x2- x1, y2- y1)
实数与向量积的坐标运算:已知 =(x, y) 实数λ
则λ =λ(x +y )=λx +λy
∴λ =(λx, λy)
结论:实数与向量的积的坐标,等于用这个实数乘原来的向量相应的坐标。
师:如果两个向量相等,那么这两个向量的坐标需满足什么条件呢?是充要条件吗?
生:a=b .
(2)例题分析
【例1】 如图所示,用基底i、j分别表示向量a、b、c、d并求出它们的坐标。
解:
师:平面向量可以用坐标表示,向量的运算可以用坐标来运算吗?如何计算?
(1)已知 ,求 、 。
(2)已知 和实数 ,求 的坐标(由学生完成)。
解:(1)
∴
(2)
∴
师:通过以上计算,你能得出向量运算的加法法则、减法法则和实数与向量的乘积的运算法则吗?
生:两个向量的和与差的坐标分别等于这两个向量相应的坐标的和与差,实数与向量的积的坐标等于这个实数乘以原来向量的相应坐标。
【例2】 已知 ,求 , , 的坐标。
解:
【例3】 已知平行四边形ABCD的三个顶点A、B、C的坐标分别是(-2,1)、(-1,3)、(3,4),求顶点D的坐标。
解:设顶点D的坐标为
由 得
由
∴顶点D的坐标为(2,2)
3.演练反馈。(投影仪)
(1)已知三个力 的合力 ,求 的坐标。
(2)已知向量 ,则 等于( )
A. B.
C. D.
(3)已知点O(0,0),A(1,2),B(4,5)及 ,求
①t为何值时,点P在x轴上?P在y轴上?P在第二象限?
②四边形OABP能成为平行四边形吗?若能,求出相应的t值,若不能,请说明理由。
参考答案:
(1)
∴
(2)B.
(3)① ,若P在x轴上,只需 ;若P在y轴上,只需 ∴ ;若P在第二象限,则需 解得 。
②
若OABP为平行四边形,需
于是 无解。故四边形OABP不能成为平行四边形。
4.总结提炼
(1)引进向量的坐标后,向量的基本运算转化为实数的基本运算,可以解方程,可以解不等式,总之问题转化为我们熟知的领域之中。
(2)要把点坐标 与向量坐标区分开来,两者不是一个概念。
五.板书设计
1.平面向量的坐标定义。
(1)
(2)i、j的含义
(3) 是a的坐标
2.平面向量坐标运算
例1
例2
演练反馈
总结提炼
-
【充分条件与必要条件】充分条件与必要条件详细阅读
教学目标 (1)正确理解充分条件、必要条件和充要条件的概念; (2)能正确判断是充分条件、必要条件还是充要条件; (3)培养学生的逻辑思维能力及归纳总结能力; (4)在充要条件的教学中,培养等价转化思想. 教学建议(一)教材分析1.知识结构 首先给出推断符号“ ”,并引出的意义,在此基础上讲述了充...
-
函数奇偶性知识点归纳|函数单调性与奇偶性详细阅读
教学目标 1 了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法 (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念 (2)能从数和形两个角度认识单调性和奇偶性 (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶...
-
[数列]数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一...
-
一元二次不等式的解法_一元二次不等式的解法详细阅读
教学目标 (1)掌握; (2)知道一元二次不等式可以转化为一元一次不等式组; (3)了解简单的分式不等式的解法; (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系; (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式; (6)通过利...
-
等比数列的前n项和公式_等比数列的前n项和详细阅读
教学目标 1 掌握等比数列前 项和公式,并能运用公式解决简单的问题 (1)理解公式的推导过程,体会转化的思想; (2)用方程的思想认识等比数列前 项和公式,利用公式知三求一;与通项公式结合知三求二; 2 通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想 3 通过公式推导...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及五个字母,已...
-
【数列】数列详细阅读
教学目标 1.使学生理解的概念,了解通项公式的意义,了解递推公式是给出的一种方法,并能根据递推公式写出的前几项. (1)理解是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解的各种表示方法,理解通项公式是第 项 与项数 的关系式,能根据通项公式写出的前几项,并能根据给出的一个的前...
-
等差数列求和公式_等差数列详细阅读
教学目标 1 理解的概念,掌握的通项公式,并能运用通项公式解决简单的问题 (1)了解公差的概念,明确一个数列是的限定条件,能根据定义判断一个数列是,了解等差中项的概念; (2)正确认识使用的各种表示法,能灵活运用通项公式求的首项、公差、项数、指定的项; (3)能通过通项公式与图像认识的性质,能用...
-
等差数列的前n项和公式_等差数列的前n项和详细阅读
教学目标 1 掌握等差数列前 项和的公式,并能运用公式解决简单的问题 (1)了解等差数列前 项和的定义,了解逆项相加的原理,理解等差数列前 项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前 项和的公式,利用公式求 ;等差数列通项公式与前 项和的公式两套公式涉及...
-
[交集]交集、并集详细阅读
教学目标 : (1)理解交集与并集的概念; (2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合; (3)能用图示法表示集合之间的关系; (4)掌握两个较简单集合的的求法; (5)通过对概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程; (6)通过对集...